Advertisements
Advertisements
प्रश्न
Differentiate : log (1 + x2) w.r.t. cot-1 x.
उत्तर
Let u =log (1 + x2)
v = cot-1 x
To differentiate log ( 1 + x2) w.r.t. cot-1 x is to find `"du"/"dv"`
Here u =log (1 + x2J and u = cot-1 x,
where x is a parameter.
Differentiating w.r.t. x,
`"du"/"dx" = 1/(1 + "x"^2) xx "2x" , "dv"/"dx" = (-1)/(1 + "x"^2)`
`therefore "du"/"dv" = (("du"/"dx"))/(("dv"/"dx")) , "du"/"dx" != 0`
`= (("2x")/(1+"x"^2))/((-1)/(1 + "x"^2)) = "-2x"`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
`d/dx(x^{sinx})` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
Find the derivative of `y = log x + 1/x` with respect to x.