हिंदी

If x = sin–1(et), y = show thatdy1-e2t,show thatsinx+dydx = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0

योग

उत्तर

x = sin–1(et), y = `sqrt(1 - e^(2t))`
Differentiating x and y w.r.t. t, we get
`dx/dt = d/dt[sin^-1(e^t)]`

= `(1)/sqrt(1 - (e^t)^2).d/dt(e^t)`

= `(1)/sqrt(1 - e^(2t)) xx e^t = e^t/sqrt(1 - e^(2t))`  and
`dy/dt = d/dt(sqrt(1 - e^(2t)))`

= `(1)/(2sqrt(1 - e^(2t))).d/dt(1 - e^(2t))`

= `(1)/(2sqrt(1 - e^(2t))). xx (0 - e^(2t) xx 2)`

= `(-e^(2t))/sqrt(1 - e^(2t))`

∴ `dy/dx = ((dy/dt))/((dx/dt)`

= `(((-e^(2t))/sqrt(1 - e^(2t))))/(((e^t)/sqrt(1 - e^(2t)))`
= – et
= – sin x                ...[∵ x = sin–1(et)]
∴ `sin x + dy/dx` = 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.4 [पृष्ठ ४८]

APPEARS IN

संबंधित प्रश्न

 

if xx+xy+yx=ab, then find `dy/dx`.


Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Find `dy/dx`for the function given in the question:

xy + yx = 1


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `(d^2y)/(dx^2)` , if y = log x


Find `"dy"/"dx"` if y = xx + 5x


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


Find the second order derivatives of the following : x3.logx


Find the second order derivatives of the following : log(logx)


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


If y = `(1 + 1/x)^x` then `(2sqrt(y_2(2) + 1/8))/((log  3/2 - 1/3))` is equal to ______.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


The derivative of log x with respect to `1/x` is ______.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×