Advertisements
Advertisements
प्रश्न
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
उत्तर
Given that: xm . yn = (x + y)m+n
Taking log on both sides
log xm . yn = log (x + y)m+n ......[∵ log xy = log x + log y]
⇒ log xm + log yn = (m + n) log (x + y)
⇒ m log x + n log y = (m + n) log (x + y)
Differentiating both sides w.r.t. x
⇒ `"m" * "d"/"dx" log x + "n" * "d"/"dx" log y = ("m" + "n") "d"/"dx" log (x + y)`
⇒ `"m" * 1/x + "n" * 1/y * "dy"/"dx" = ("m" + "n") * 1/(x + y) (1 + "dy"/"dx")`
⇒ `"m"/x + "n"/y * "dy"/"dx" = ("m" + "n")/(x + y) * (1 + "dy"/"dx")`
⇒ `"m"/x + "n"/y * "dy"/"dx" = ("m" + "n")/(x + y) + ("m" + "n")/(x + y) * "dy"/"dx"`
⇒ `"n"/y * "dy"/"dx" - ("m" + "n")/(x + y) * "dy"/"dx" = ("m" + "n")/(x + y) - "m"/x`
⇒ `("n"/y - ("m" + "n")/(x + y))"dy"/"dx" = ("m" + "n")/(x + y) - "m"/x`
⇒ `(("n"x + "n"y - "m"y - "n"y)/(y(x + y)))"dy"/"dx" = (("m"x + "n"x - "m"x - "m"y)/(x(x + y)))`
⇒ `(("n"x - "m"y)/(y(x + y))) "dy"/"dx" = (("n"x- "m"y)/(x(x + y)))`
⇒ `"dy"/"dx" = ("n"x - "m"y)/(x(x + y)) xx (y(x + y))/("n"x - "m"y)`
⇒ `"dy"/"dx" = y/x`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Find `dy/dx` if y = xx + 5x
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
Find the second order derivatives of the following : log(logx)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
`d/dx(x^{sinx})` = ______
`8^x/x^8`
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.