Advertisements
Advertisements
प्रश्न
`8^x/x^8`
उत्तर
Let y = `8^x/x^8`
Taking log on both sides, we get,
log y = `log 8^x/x^8`
⇒ log y = `log 8^x - log x^8`
⇒ log y = x log 8 – 8 log x
Differentiating both sides w.r.t. x
⇒ `1/y * "dy"/"dx" = log 8.1 - 8/x`
⇒ `"dy"/"dx" = y [log 8 - 8/x]`
Hence, `"dy"/"dx" = 8^x/x^8 [log 8 - 8/x]`
APPEARS IN
संबंधित प्रश्न
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `dy/dx` if y = xx + 5x
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
Find `(d^2y)/(dx^2)` , if y = log x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
If y = (log x)x + xlog x, find `"dy"/"dx".`
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
The derivative of x2x w.r.t. x is ______.
The derivative of log x with respect to `1/x` is ______.
Find the derivative of `y = log x + 1/x` with respect to x.