हिंदी

Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).

योग

उत्तर

Given, f(x) = (1 + x) (1 + x2) (1 + x4) (1 + x8)

Taking logarithm of both sides,

log f (x) = log [(1 + x) (1 + x2) (1 + x4) (1 + x8)]

or log f(x) = log (1 + x) + log (1 + x2) + log (1 + x4) + log (1 + x8)             ...[∵ log mn = log m + log n]

Differentiating both sides with respect to x,

`1/(f (x)) d/dx  f (x) = 1/(1 + x) d/dx (1 + x) + 1/(1 + x^2) d/dx (1 + x^2) + 1/(1 + x^4) d/dx (1 + x^4) + 1/(1 + x^8) d/dx (1 + x^8)`

or `f' (x) = 1/(1 + x) + (2x)/(1 + x^2) + (4x)/(1 + x^4) + (8x)/(1 + x^8)`

or `f' (x) =  f (x) [1/(1 + x) + (2x)/(1 + x^2) + (4x^3)/(1 + x^4) + (8x^7)/(1 + x^8)]`

`= (1 + x) (1 + x^2) + (1 + x^4)(1 + x^8) [1/(1 + x) + (2x)/(1 + x^2) + (4x^3)/(1 + x^4) + (8x^7)/(1 + x^8)]`

Putting x = 1,

f'(1) = (1 + 1) · (1 + 1) · (1 + 1) (1 + 1) `xx [1/(1 + 1) + 2/(1 + 1) + 3/(1 + 1) + 4/(1 + 1)]`

`= 2 xx 2 xx 2xx 2 xx [1/2 + 2/2 + 4/2 + 8/2]`

`= (2 xx 2 xx 2xx 2)/2 [1 + 2 + 4 + 8]`

`= 8 xx 15`

= 120

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.5 [पृष्ठ १७८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.5 | Q 16 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Find `dy/dx`for the function given in the question:

xy + yx = 1


Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:

  1. by using product rule
  2. by expanding the product to obtain a single polynomial.
  3. by logarithmic differentiation.

Do they all give the same answer?


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Find `dy/dx` if y = x+ 5x


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If y = (log x)x + xlog x, find `"dy"/"dx".`


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If f(x) = logx (log x) then f'(e) is ______


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


Derivative of loge2 (logx) with respect to x is _______.


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.


Derivative of `log_6`x with respect 6x to is ______


`2^(cos^(2_x)`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


The derivative of log x with respect to `1/x` is ______.


Evaluate:

`int log x dx`


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×