Advertisements
Advertisements
प्रश्न
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
उत्तर
`(sin "x")^"y" = "x" + "y"`
Take log on both the sides,
`log(sin "x")^"y" = log("x" + "y")`
⇒ `"y" log (sin "x") = log ("x" + "y")` ......(i)
Differentiate (i) w.r.t.x
`log (sin "x")· (d"y")/(d"x") + "y"· (d)/(d"x") [ log(sin "x")] = (d)/(d"x") [log ("x"+"y") ]`
⇒ `log (sin "x")· (d"y")/(d"x") + "y"· (cos "x")/(sin"x") = (1)/(("x"+"y"))· (1+ (d"y")/(d"x"))`
⇒ `(d"y")/(d"x") [ log( sin "x") - (1)/(("x"+"y"))] = (1)/(("x"+"y")) - "y"·cot "x" `
⇒ `(d"y")/(d"x") = (1 - ("xy" + "y"^2)·cot "x")/(("x"+"y")·log (sin "x") -1)`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Evaluate
`int 1/(16 - 9x^2) dx`
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (ax + b)
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`"d"/"dx" [(cos x)^(log x)]` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`2^(cos^(2_x)`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
If xy = yx, then find `dy/dx`