Advertisements
Advertisements
प्रश्न
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
उत्तर
y = `(sec^-1 "x")^2 ,"x" > 0`
⇒ `(d"y")/(d"x") = 2 sec^-1 "x"· (d(sec^-1"x"))/(d"x")`
⇒ `(d"y")/(d"x") = 2 sec^-1 "x"·(1)/(xsqrt(x^2 - 1))` ......(i)
⇒ `(d^2y)/(dx^2) = 2[1/(x^2(x^2 - 1))] + 2sec^-1x[[-sqrt(x^2 - 1) - x((2x)/(2sqrt(x^2 - 1))))/(x^2(x^2 - 1))]`
⇒ `(d^2"y")/(d"x"^2) = 2 [(1)/("x"^2("x"^2 -1)]] + 2 sec^-1 "x"· (1)/(xsqrt("x"^2 - 1)) [ ("x"(1 - 2"x"^2))/("x"^2 ("x"^2 - 1))] ` .......(ii)
From (i) and (ii), we get
`(d^2"y")/(d"x"^2) = 2 [(1)/("x"^2("x"^2 -1)]] + (d"y")/(d"x") [ ("x"(1 - 2"x"^2))/("x"^2 ("x"^2 - 1))] `
⇒ `"x"^2 ("x"^2 -1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x")· (d"y")/(d"x") - 2 = 0`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
sin (ax + b)
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
Differentiate w.r.t. x the function:
`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3
If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.
if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`
If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`
If y = tan(x + y), find `("d"y)/("d"x)`
Let f(x)= |cosx|. Then, ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
`sin sqrt(x) + cos^2 sqrt(x)`
sinx2 + sin2x + sin2(x2)
`sin^-1 1/sqrt(x + 1)`
(sin x)cosx
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
If f(x) = | cos x |, then `f((3π)/4)` is ______.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.