Advertisements
Advertisements
प्रश्न
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.
उत्तर
Any function will not be differentiable if the left hand limit and the right hand limit are not equal.
f(x) = [x], 0 < x < 3
(i) At x = 1
Left side limit = `lim_(h -> 0) ([1 - h] - [1])/-h`
= `lim_(h -> 0) (0 - 1)/-h`
= `lim_(h -> 0) 1/h`
= infinite
right hand limit
= `lim_(h -> 0) ([1 + h] - [1])/h`
= `lim_(h -> 0) (1 - 1)/h`
= 0
Left side limit and right side limit are not equal.
Hence, f(x) is not differentiable at x = 1.
(ii) At x = 2
left side limit
= `lim_(h -> 0) (f(2 + h) - f(2))/h`
= `lim_(h -> 0) ([2 + h]-2)/h`
= `lim_(h -> 0) (2 -2)/h`
= 0
right hand limit
= `lim_(h -> 0) (f(2 - h) - f (2))/h`
= `lim_(h -> 0) ([2 - h] - [2])/-h`
= `lim_(h -> 0) (1 - 2)/-h`
= infinite
Left side limit and right side limit are not equal.
Hence, f(x) is not differentiable at x = 2.
संबंधित प्रश्न
Differentiate the function with respect to x.
sin (ax + b)
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate the function with respect to x.
`cos x^3. sin^2 (x^5)`
Differentiate w.r.t. x the function:
(3x2 – 9x + 5)9
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Differentiate w.r.t. x the function:
`(cos^(-1) x/2)/sqrt(2x+7), -2 < x < 2`
Discuss the continuity and differentiability of the
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
If y = tan(x + y), find `("d"y)/("d"x)`
Let f(x)= |cosx|. Then, ______.
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
`cos(tan sqrt(x + 1))`
`sin^-1 1/sqrt(x + 1)`
sinmx . cosnx
`tan^-1 (secx + tanx), - pi/2 < x < pi/2`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2))), -1 < x < 1, x ≠ 0`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.
If sin y = x sin (a + y), then value of dy/dx is
Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.
If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.
The function f(x) = x | x |, x ∈ R is differentiable ______.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.