Advertisements
Advertisements
प्रश्न
sinmx . cosnx
उत्तर
Let y = sinmx . cosnx
∴ `"dy"/"dx" = "d"/"dx" [(sin x)^"m" * (cos x)^"n"]`
= `(sin x)^"m" "d"/"dx" (cos x)^"n" + (cos x)^"n" "d"/"dx" (sin x)^"m"`
= `(sin x)^"m" "n"(cos x)^("n" - 1) "d"/"dx" (cos x) + (cos x)^"n" "m"(sin x)^("m" - 1) "d"/"dx" (sin x)`
= `(sin x)^"m" "n"(cos x)^("n" - 1) (- sin x) + (cos x)^"n" "m"(sin x)^("m" - 1) cos x`
= sinm x cosn x[–n tan x + m cot x]
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
sin (ax + b)
Differentiate the function with respect to x.
`cos x^3. sin^2 (x^5)`
Differentiate the function with respect to x.
`2sqrt(cot(x^2))`
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
Let f(x) = x|x|, for all x ∈ R. Discuss the derivability of f(x) at x = 0
Differential coefficient of sec (tan–1x) w.r.t. x is ______.
COLUMN-I | COLUMN-II |
(A) If a function f(x) = `{((sin3x)/x, "if" x = 0),("k"/2",", "if" x = 0):}` is continuous at x = 0, then k is equal to |
(a) |x| |
(B) Every continuous function is differentiable | (b) True |
(C) An example of a function which is continuous everywhere but not differentiable at exactly one point |
(c) 6 |
(D) The identity function i.e. f (x) = x ∀ ∈x R is a continuous function |
(d) False |
cos |x| is differentiable everywhere.
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
sinn (ax2 + bx + c)
`sin^-1 1/sqrt(x + 1)`
(x + 1)2(x + 2)3(x + 3)4
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`
If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
Let S = {t ∈ R : f(x) = |x – π| (e|x| – 1)sin |x| is not differentiable at t}. Then the set S is equal to ______.
If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.