Advertisements
Advertisements
प्रश्न
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.
विकल्प
`cos/(2y - 1)`
`cosx/(1 - 2y)`
`sinx/(1 - 2y)`
`sinx/(2y - 1)`
उत्तर
If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to `cos/(2y - 1)`.
Explanation:
Given that: y = `sqrt(sinx + y)`
Differentiating both sides w.r.t. x
`"dy"/"dx" = 1/(2sqrt(sinx + y)) * "d"/"dx" (sin x + y)`
⇒ `"dy"/"dx" = 1/(2sqrt(sinx + y)) * (cos x + "dy"/"dx")`
⇒ `"dy"/"dx" = 1/(2y) * [cos x + "dy"/"dx"]`
⇒ `"dy"/"dx" = cosx/(2y) + 1/(2y) * "dy"/"dx"`
⇒ `"dy"/"dx" - 1/(2y) * "dy"/"dx" = cosx/(2y)`
⇒ `(1 - 1/(2y))"dy"/"dx" = cosx/(2y)`
⇒ `((2y - 1)/(2y)) "dy"/"dx" = cosx/(2y)`
⇒ `"dy"/"dx" = cosx/(2y) xx (2y)/(2y - 1)`
⇒ `"dy"/"dx" = cosx/(2y - 1)`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
sin (x2 + 5)
Differentiate the function with respect to x.
cos (sin x)
Differentiate the function with respect to x.
`sec(tan (sqrtx))`
Differentiate the function with respect to x.
`(sin (ax + b))/cos (cx + d)`
Differentiate the function with respect to x.
`cos x^3. sin^2 (x^5)`
Differentiate w.r.t. x the function:
sin3 x + cos6 x
Differentiate w.r.t. x the function:
`(5x)^(3cos 2x)`
If f (x) = |x|3, show that f ″(x) exists for all real x and find it.
`"If y" = (sec^-1 "x")^2 , "x" > 0 "show that" "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`
If f(x) = x + 1, find `d/dx (fof) (x)`
If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`
If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.
|sinx| is a differentiable function for every value of x.
cos |x| is differentiable everywhere.
Show that the function f(x) = |sin x + cos x| is continuous at x = π.
sinx2 + sin2x + sin2(x2)
(sin x)cosx
`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`
`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`
`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`
If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.
The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.
A function is said to be continuous for x ∈ R, if ____________.
`d/(dx)[sin^-1(xsqrt(1 - x) - sqrt(x)sqrt(1 - x^2))]` is equal to
Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.
Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.
The set of all points where the function f(x) = x + |x| is differentiable, is ______.
Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.