हिंदी

Differentiate the function with respect to x. sec(tan(x)) - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate the function with respect to x.

`sec(tan (sqrtx))`

योग

उत्तर

Let, y = `sec(tan (sqrtx))`

Differentiating both sides with respect to x,

`dy/dx = d/dx sec [tan (sqrtx)]`

`= sec [tan (sqrtx)] * tan [tan (sqrtx)] d/dx tan sqrtx`

`= sec (tan sqrtx) tan (tan sqrtx) * sec^2 sqrtx * d/dx x^(1//2)`

`= dy/dx = sec [tan (sqrtx)] tan [tan sqrtx] sec^2 sqrtx * 1/(2sqrtx)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.2 [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.2 | Q 4 | पृष्ठ १६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Differentiate the function with respect to x.

sin (ax + b)


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

`(5x)^(3cos 2x)`


Differentiate w.r.t. x the function:

`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`


Differentiate w.r.t. x the function:

`(cos^(-1)  x/2)/sqrt(2x+7), -2 < x < 2`


Differentiate w.r.t. x the function:

`x^(x^2 -3) + (x -3)^(x^2)`, for x > 3


Find `dy/dx, if y = 12 (1 – cos t), x = 10 (t – sin t), -pi/2< t< pi/2` 


If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.


If f (x) = |x|3, show that f ″(x) exists for all real x and find it.


Discuss the continuity and differentiability of the 

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right| \text{in the interval} \left( - 1, 2 \right)\]

If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


`"If y" = (sec^-1 "x")^2 , "x" > 0  "show that"  "x"^2 ("x"^2 - 1) (d^2"y")/(d"x"^2) + (2"x"^3 - "x") (d"y")/(d"x") - 2 = 0`


If f(x) = x + 1, find `d/dx (fof) (x)`


If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`


Differentiate `tan^-1 (sqrt(1 - x^2)/x)` with respect to`cos^-1(2xsqrt(1 - x^2))`, where `x ∈ (1/sqrt(2), 1)`


If u = `sin^-1 ((2x)/(1 + x^2))` and v = `tan^-1 ((2x)/(1 - x^2))`, then `"du"/"dv"` is ______.


COLUMN-I COLUMN-II
(A) If a function
f(x) = `{((sin3x)/x, "if"  x = 0),("k"/2",",  "if"  x = 0):}`
is continuous at x = 0, then k is equal to
(a) |x|
(B) Every continuous function is differentiable (b) True
(C) An example of a function which is continuous
everywhere but not differentiable at exactly one point
(c) 6
(D) The identity function i.e. f (x) = x ∀ ∈x R
is a continuous function
(d) False

cos |x| is differentiable everywhere.


`sin sqrt(x) + cos^2 sqrt(x)`


sinn (ax2 + bx + c)


`sin^-1  1/sqrt(x + 1)`


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.


For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.


If k be an integer, then `lim_("x" -> "k") ("x" - ["x"])` ____________.


A function is said to be continuous for x ∈ R, if ____________.


A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.


Let f: R→R and f be a differentiable function such that f(x + 2y) = f(x) + 4f(y) + 2y(2x – 1) ∀ x, y ∈ R and f’(0) = 1, then f(3) + f’(3) is ______.


If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.


If f(x) = `{{:(x^2"," if x ≥ 1),(x"," if x < 1):}`, then show that f is not differentiable at x = 1.


The set of all points where the function f(x) = x + |x| is differentiable, is ______.


Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×