हिंदी

Differentiate w.r.t. x the function: sin–1(xx),0≤x≤1 - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate w.r.t. x the function:

`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`

योग

उत्तर

Let, `y = sin^-1 (x sqrtx)`

On differentiating with respect to x,

`dy/dx = 1/ sqrt (1 - x^3). d/dx x sqrtx`

`= 1/ sqrt(1 - x^3). [x . 1/(2  sqrtx) + sqrtx]`

`= 1/ sqrt(1 - x^3) [sqrtx/2 + sqrtx]`

`= 1/sqrt (1 - x^3) [(sqrtx + 2sqrtx)/2]`

`= 3/2 * sqrt(x/(1 - x^3))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.9 [पृष्ठ १९१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.9 | Q 4 | पृष्ठ १९१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Differentiate the function with respect to x.

sin (x2 + 5)


Differentiate the function with respect to x.

cos (sin x)


Differentiate the function with respect to x.

sin (ax + b)


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

(3x2 – 9x + 5)9


Differentiate w.r.t. x the function:

sin3 x + cos6 x


Differentiate w.r.t. x the function:

`(5x)^(3cos 2x)`


Differentiate w.r.t. x the function:

`(cos^(-1)  x/2)/sqrt(2x+7), -2 < x < 2`


If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.


Does there exist a function which is continuos everywhere but not differentiable at exactly two points? Justify your answer?


Discuss the continuity and differentiability of the 

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right| \text{in the interval} \left( - 1, 2 \right)\]

If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`


Let f(x)= |cosx|. Then, ______.


Differential coefficient of sec (tan–1x) w.r.t. x is ______.


COLUMN-I COLUMN-II
(A) If a function
f(x) = `{((sin3x)/x, "if"  x = 0),("k"/2",",  "if"  x = 0):}`
is continuous at x = 0, then k is equal to
(a) |x|
(B) Every continuous function is differentiable (b) True
(C) An example of a function which is continuous
everywhere but not differentiable at exactly one point
(c) 6
(D) The identity function i.e. f (x) = x ∀ ∈x R
is a continuous function
(d) False

`sin sqrt(x) + cos^2 sqrt(x)`


sinn (ax2 + bx + c)


`sin^-1  1/sqrt(x + 1)`


sinmx . cosnx


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 (secx + tanx), - pi/2 < x < pi/2`


`tan^-1 ((3"a"^2x - x^3)/("a"^3 - 3"a"x^2)), (-1)/sqrt(3) < x/"a" < 1/sqrt(3)`


If xm . yn = (x + y)m+n, prove that `("d"^2"y")/("dx"^2)` = 0


If y = `sqrt(sinx + y)`, then `"dy"/"dx"` is equal to ______.


For the curve `sqrt(x) + sqrt(y)` = 1, `"dy"/"dx"` at `(1/4, 1/4)` is ______.


The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.


If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.


If sin y = x sin (a + y), then value of dy/dx is


Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.


A particle is moving on a line, where its position S in meters is a function of time t in seconds given by S = t3 + at2 + bt + c where a, b, c are constant. It is known that at t = 1 seconds, the position of the particle is given by S = 7 m. Velocity is 7 m/s and acceleration is 12 m/s2. The values of a, b, c are ______.


If f(x) = `{{:((sin(p  +  1)x  +  sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x  +  x^2)  -  sqrt(x))/(x^(3//2)),",", x > 0):}`

is continuous at x = 0, then the ordered pair (p, q) is equal to ______.


The set of all points where the function f(x) = x + |x| is differentiable, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×