हिंदी

If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that [1+(dydx)2]32d2ydx2 is a constant independent of a and b. - Mathematics

Advertisements
Advertisements

प्रश्न

If (x – a)2 + (y – b)2 = c2, for some c > 0, prove that `[1+ (dy/dx)^2]^(3/2)/((d^2y)/dx^2)` is a constant independent of a and b.

योग

उत्तर

Here,  (x – a)2 + (y – b)2 = (Given)                    …(1)

On differentiating with respect to x,

`=> 2 (x - a) + 2(y - b)^2  dy/dx = 0`

`=> (x - a) + (y - b)  dy/dx = 0`                 ...(2)

Differentiating again with respect to x,

`1 + dy/dx * dy/dx + (y - b) (d^2 y)/dx^2` = 0

`1 + (dy/dx)^2 + (y - b) (d^2y)/dx^2` = 0

`=> (y - b) = - {(1 + (dy/dx)^2)/((d^2y)/dx^2)}`            ...(3)

Putting the value of (y – b) in (2),

`(x - a) = (1 + (dy/dx)^2)/((d^2 y)/dx^2) * dy/dx`

या `(x - a) = {(1 + (dy/dx)^2)/((d^2y)/dx^2)}(dy/dx)`            ...(4)

Putting the values ​​of (x - a) and (y - b) from (3) and (4) in (1),

`{1 + (dy/dx)^2}^2/((d^2y)/dx^2)^2 * (dy/dx)^2 + {(1 + (dy/dx)^2)/((d^2y)/dx^2)} = c^2`

On multiplying by `((d^2y)/dx^2)^2,`

`[1 + (dy/dx)^2]^2 (dy/dx)^2 + [1 + (dy/dx)^2]^2`

`= c^2 ((d^2y)/dx)^2`

`=> [1 + (dy/dx)^2]^2 [(dy/dx)^2 + 1] = c^2 ((d^2y)/dx^2)^2`

`=> {1 + (dy/dx)^2}^3 = c^2 ((d^2y)/dx^2)^2`

On taking the square root,

`therefore {1 + (dy/dx)^2}^(3//2)/((d^2y)/dx^2)` = c      ...(a constant independent of a and b.)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.9 [पृष्ठ १९१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.9 | Q 15 | पृष्ठ १९१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Differentiate the function with respect to x.

sin (x2 + 5)


Differentiate the function with respect to x.

cos (sin x)


Differentiate the function with respect to x.

sin (ax + b)


Differentiate the function with respect to x.

`(sin (ax + b))/cos (cx + d)`


Differentiate the function with respect to x. 

`cos x^3. sin^2 (x^5)`


Differentiate the function with respect to x. 

`2sqrt(cot(x^2))`


Prove that the function f given by  `f(x) = |x - 1|, x  in R`  is not differentiable at x = 1.


Differentiate w.r.t. x the function:

sin3 x + cos6 x


Differentiate w.r.t. x the function:

`(5x)^(3cos 2x)`


Differentiate w.r.t. x the function:

`sin^(–1)(xsqrtx ), 0 ≤ x ≤ 1`


if y = `[(f(x), g(x), h(x)),(l, m,n),(a,b,c)]`, prove that `dy/dx` =`|(f'(x), g'(x), h'(x)),(l,m, n),(a,b,c)|`


If sin y = xsin(a + y) prove that `(dy)/(dx) = sin^2(a + y)/sin a`


If y = tanx + secx, prove that `("d"^2y)/("d"x^2) = cosx/(1 - sinx)^2`


|sinx| is a differentiable function for every value of x.


Show that the function f(x) = |sin x + cos x| is continuous at x = π.


`cos(tan sqrt(x + 1))`


`sin^-1  1/sqrt(x + 1)`


(sin x)cosx 


(x + 1)2(x + 2)3(x + 3)4


`cos^-1 ((sinx + cosx)/sqrt(2)), (-pi)/4 < x < pi/4`


`tan^-1 (sqrt((1 - cosx)/(1 + cosx))), - pi/4 < x < pi/4`


`tan^-1 (("a"cosx - "b"sinx)/("b"cosx - "a"sinx)), - pi/2 < x < pi/2` and `"a"/"b" tan x > -1`


`sec^-1 (1/(4x^3 - 3x)), 0 < x < 1/sqrt(2)`


The differential coefficient of `"tan"^-1 ((sqrt(1 + "x") - sqrt (1 - "x"))/(sqrt (1+ "x") + sqrt (1 - "x")))` is ____________.


If `"f"("x") = ("sin" ("e"^("x"-2) - 1))/("log" ("x" - 1)), "x" ne 2 and "f" ("x") = "k"` for x = 2, then value of k for which f is continuous is ____________.


A function is said to be continuous for x ∈ R, if ____________.


If `y = (x + sqrt(1 + x^2))^n`, then `(1 + x^2) (d^2y)/(dx^2) + x (dy)/(dx)` is


Let c, k ∈ R. If f(x) = (c + 1)x2 + (1 – c2)x + 2k and f(x + y) = f(x) + f(y) – xy, for all x, y ∈ R, then the value of |2(f(1) + f(2) + f(3) + ... + f(20))| is equal to ______.


If f(x) = `{{:((sin(p  +  1)x  +  sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x  +  x^2)  -  sqrt(x))/(x^(3//2)),",", x > 0):}`

is continuous at x = 0, then the ordered pair (p, q) is equal to ______.


If f(x) = `{{:(ax + b; 0 < x ≤ 1),(2x^2 - x; 1 < x < 2):}` is a differentiable function in (0, 2), then find the values of a and b.


The function f(x) = x | x |, x ∈ R is differentiable ______.


If f(x) = | cos x |, then `f((3π)/4)` is ______.


The set of all points where the function f(x) = x + |x| is differentiable, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×