Advertisements
Advertisements
प्रश्न
If `xsqrt(1+y) + y sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`
उत्तर
`x sqrt(1 + y) + y sqrt(1 + x) = 0`
`therefore xsqrt(1 + y) = - y sqrt(1 + x) = 0`
On squaring both sides,
x2 (1 + y) = y2 (1 + x)
⇒ x2 + x2y = y2 + y2x
⇒ x2 – y2 – y2x + x2y = 0
⇒ (x – y)(x + y) + xy(x – y) = 0
⇒ (x – y)[x + y + xy] = 0
x – y = 0 ⇒ x ≠ y
x + y (1 + x) = 0
`therefore y = - x/(1 - x)`
`therefore dy/dx = ((1 + x)(1) - x * 1)/(1 + x)^2`
`= - (1 + x - x)/(1 + x)^2`
`= - 1/(1 + x)^2`
APPEARS IN
संबंधित प्रश्न
Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.
If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`
(a) y
(b) x
(c) y/x
(d) 0
If `y=sin^-1(3x)+sec^-1(1/(3x)), ` find dy/dx
Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`
Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`
Find the derivative of the following function f(x) w.r.t. x, at x = 1 :
`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`
if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.
Find `dy/dx` in the following:
`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`
Find `dy/dx` in the following:
`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Find `dy/dx` in the following:
`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Find `dy/dx` in the following:
`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x < 1/sqrt2`
Find `dy/dx` in the following:
`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`
Differentiate w.r.t. x the function:
`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`
Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`
If `sqrt(1-x^2) + sqrt(1- y^2)` = a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`
Find the approximate value of tan−1 (1.001).
if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`
If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y" "cos"^2"x" = 0`
If y = sin-1 x + cos-1x find `(dy)/(dx)`.
If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`
If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.
If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`
The function f(x) = cot x is discontinuous on the set ______.
Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.
`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.
`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.
If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then" "dy"/"dx"` is ____________.
If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then" ("d"^2"y")/("dx"^2)` is ____________.
The derivative of sin x with respect to log x is ____________.
The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to
Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.