Advertisements
Advertisements
प्रश्न
Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.
उत्तर
`Let y=cos^-1((3cosx-2sinx)/sqrt13) `
` =cos^-1(3/sqrt13cosx-2/sqrt13sinx)`
`Put cosA=3/sqrt13`
`sinA=sqrt(1-9/13)=2/sqrt13`
`y=cos^-1[cosAcosx-sinAsinx]`
`y=cos^-1[cos(A+x)]`
y = A + x, where A is a constant
`dy/dx=d/dx(A+x)=1`
APPEARS IN
संबंधित प्रश्न
If `y=sin^-1(3x)+sec^-1(1/(3x)), ` find dy/dx
Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`
Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`
Find the derivative of the following function f(x) w.r.t. x, at x = 1 :
`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`
if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.
Find `dy/dx` in the following:
`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`
Find `dx/dy` in the following:
`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`
Differentiate w.r.t. x the function:
`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`
Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`
If `xsqrt(1+y) + y sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`
If `sqrt(1-x^2) + sqrt(1- y^2)` = a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`
Solve `cos^(-1)(sin cos^(-1)x) = pi/2`
Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).
If y = (sec-1 x )2 , x > 0, show that
`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`
If y = sin-1 x + cos-1x find `(dy)/(dx)`.
If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`
If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`
The function f(x) = cot x is discontinuous on the set ______.
`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.
`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.
`lim_("x"-> 0) ("cosec x - cot x")/"x"` is equal to ____________.
`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.
If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then" "dy"/"dx"` is ____________.
If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then" ("d"^2"y")/("dx"^2)` is ____________.
If y = sin–1x, then (1 – x2)y2 is equal to ______.
Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.