हिंदी

If Y = (Sec-1 X )2 , X > 0, Show that X 2 ( X 2 − 1 ) D 2 Y D X 2 + ( 2 X 3 − X ) D Y D X − 2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If y = (sec-1 x )2 , x > 0, show that 

`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`

योग

उत्तर

y = ( sec-1 x)

`dy/dx = 2 (sec^(-1) x) 1/ (xsqrt(x^2 - 1))`

`x sqrt(x^2 - 1 ) dy/dx = 2 sec^(-1) x`

Again differentiating both sides

`x sqrt(x^2 -1) (d^2 y )/(dx^2) + (dy)/(dx) [sqrt(x^2 - 1 )  +(x^2)/ sqrt(x^2 - 1) ] = (2 xx 1 ) /(x sqrt (x^2 - 1))`

`x sqrt(x^2 -1) (d^2 y )/(dx^2) + (dy)/(dx) ((x^2 - 1 + x^2)/ sqrt(x^2 - 1) ) =  2/(x sqrt (x^2 - 1))`

`[ x (x^2 -1) (d^2 y )/(dx^2) + (dy)/(dx)(2x^2 - 1)] 1/sqrt(x^2 - 1 ) = 2/( x sqrt(x^2 - 1))`

`x^2(x^2 - 1) (d^2y)/(dx^2) + x(2x^2 - 1 ) (dy)/(dx) = 2 `

`x^2(x^2 - 1) (d^2y)/(dx^2) + x(2x^3 - x ) (dy)/(dx) - 2 = 0`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/3/3

संबंधित प्रश्न

Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.


If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`

(a) y

(b) x

(c) y/x

(d) 0


Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`


Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`


Find the derivative of the following function f(x) w.r.t. x, at x = 1 : 

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`


If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x21, then find dy/dx.


Find `dy/dx` in the following:

`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dx/dy` in the following:

`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`


Find `dy/dx` in the following:

`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`


Differentiate w.r.t. x the function:

`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`


If `xsqrt(1+y) + y  sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`


If `sqrt(1-x^2)  + sqrt(1- y^2)` =  a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`


if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`


Solve `cos^(-1)(sin cos^(-1)x) = pi/2`


If y = sin-1 x + cos-1x find  `(dy)/(dx)`.


If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.


`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.


`lim_("x"-> 0) ("cosec x - cot x")/"x"`  is equal to ____________.


If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then"  "dy"/"dx"` is ____________.


The derivative of sin x with respect to log x is ____________.


If y = sin–1x, then (1 – x2)y2 is equal to ______.


Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×