मराठी

If Y = (Sec-1 X )2 , X > 0, Show that X 2 ( X 2 − 1 ) D 2 Y D X 2 + ( 2 X 3 − X ) D Y D X − 2 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If y = (sec-1 x )2 , x > 0, show that 

`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`

बेरीज

उत्तर

y = ( sec-1 x)

`dy/dx = 2 (sec^(-1) x) 1/ (xsqrt(x^2 - 1))`

`x sqrt(x^2 - 1 ) dy/dx = 2 sec^(-1) x`

Again differentiating both sides

`x sqrt(x^2 -1) (d^2 y )/(dx^2) + (dy)/(dx) [sqrt(x^2 - 1 )  +(x^2)/ sqrt(x^2 - 1) ] = (2 xx 1 ) /(x sqrt (x^2 - 1))`

`x sqrt(x^2 -1) (d^2 y )/(dx^2) + (dy)/(dx) ((x^2 - 1 + x^2)/ sqrt(x^2 - 1) ) =  2/(x sqrt (x^2 - 1))`

`[ x (x^2 -1) (d^2 y )/(dx^2) + (dy)/(dx)(2x^2 - 1)] 1/sqrt(x^2 - 1 ) = 2/( x sqrt(x^2 - 1))`

`x^2(x^2 - 1) (d^2y)/(dx^2) + x(2x^2 - 1 ) (dy)/(dx) = 2 `

`x^2(x^2 - 1) (d^2y)/(dx^2) + x(2x^3 - x ) (dy)/(dx) - 2 = 0`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/3/3

संबंधित प्रश्‍न

Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.


If `y=sin^-1(3x)+sec^-1(1/(3x)), `  find dy/dx


Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`


if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.


Find `dy/dx` in the following:

`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dx/dy` in the following:

`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x  < 1/sqrt2`


Find `dy/dx` in the following:

`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`


Differentiate w.r.t. x the function:

`cot^(-1) [(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))]`, ` 0 < x < pi/2`


If `sqrt(1-x^2)  + sqrt(1- y^2)` =  a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`


Find the approximate value of tan−1 (1.001).


If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y"  "cos"^2"x" = 0`


If y = sin-1 x + cos-1x find  `(dy)/(dx)`.


If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`


The function f(x) = cot x is discontinuous on the set ______.


Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.


`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.


`lim_("x"-> 0) ("cosec x - cot x")/"x"`  is equal to ____________.


If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then"  "dy"/"dx"` is ____________.


The derivative of sin x with respect to log x is ____________.


The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×