Advertisements
Advertisements
प्रश्न
if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.
उत्तर
Given that
`y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]`
if y = sin-1x, then `dy/dx=1/sqrt(1-x^2)`
`y = sin^(-1)[6x-4sqrt(1-4x^2)/5]`
`=> y = sin^(-1)[(6x)/5-(4sqrt(1-4x^2))/5]`
`=> y =sin^(-1)[(2x xx3)/5-(4sqrt(1-(2x)^2))/5]`
`=>y = sin^(-1)[2xx3/5-4/5sqrt(1-(2x)^2)]`
`=>y = sin^(-1)[2xxsqrt(1-(4/5)^2)-4/5sqrt(1-(2x)^2)]`
We know that
`sin^(-1)p-sin^(-1)q=sin^-1(psqrt(1-q^2)-qsqrt(1-p^2)))`
Here, p=2x and `q=4/5`
Therefore,
`y= sin^(-1)2x-sin^(-1)`
Differentiating the above function with respect to x, we have,
`dy/dx=1/sqrt(1-(2x)^2)xx2-0`
`=>dy/dx=2/sqrt(1-4x^2)`
APPEARS IN
संबंधित प्रश्न
Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.
Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`
Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`
If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x2≤1, then find dy/dx.
Find `dy/dx` in the following:
`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Find `dy/dx` in the following:
`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Find `dx/dy` in the following:
`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`
Find `dy/dx` in the following:
`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x < 1/sqrt2`
Find `dy/dx` in the following:
`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`
Differentiate w.r.t. x the function:
`cot^(-1) [(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))]`, ` 0 < x < pi/2`
Differentiate w.r.t. x the function:
`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`
If `sqrt(1-x^2) + sqrt(1- y^2)` = a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`
Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x
If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`
The function f(x) = cot x is discontinuous on the set ______.
`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.
`lim_("x"-> 0) ("cosec x - cot x")/"x"` is equal to ____________.
`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.
If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then" ("d"^2"y")/("dx"^2)` is ____________.
The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to
If y = sin–1x, then (1 – x2)y2 is equal to ______.
Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.