मराठी

if y = sin^(-1)[(6x-4sqrt(1-4x^2))/5] Find dy/dx. - Mathematics

Advertisements
Advertisements

प्रश्न

if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.

उत्तर

Given that

`y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]`

if y = sin-1x, then `dy/dx=1/sqrt(1-x^2)`

`y = sin^(-1)[6x-4sqrt(1-4x^2)/5]`

`=> y = sin^(-1)[(6x)/5-(4sqrt(1-4x^2))/5]`

`=> y =sin^(-1)[(2x xx3)/5-(4sqrt(1-(2x)^2))/5]`

`=>y = sin^(-1)[2xx3/5-4/5sqrt(1-(2x)^2)]`

`=>y = sin^(-1)[2xxsqrt(1-(4/5)^2)-4/5sqrt(1-(2x)^2)]`

We know that

`sin^(-1)p-sin^(-1)q=sin^-1(psqrt(1-q^2)-qsqrt(1-p^2)))`

Here, p=2x and  `q=4/5`

Therefore,

`y= sin^(-1)2x-sin^(-1)`

Differentiating the above function with respect to x, we have,

 `dy/dx=1/sqrt(1-(2x)^2)xx2-0`

 `=>dy/dx=2/sqrt(1-4x^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 1 N

संबंधित प्रश्‍न

Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.


Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`


Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`


If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x21, then find dy/dx.


Find `dy/dx` in the following:

`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dx/dy` in the following:

`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x  < 1/sqrt2`


Find `dy/dx` in the following:

`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`


Differentiate w.r.t. x the function:

`cot^(-1) [(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))]`, ` 0 < x < pi/2`


Differentiate w.r.t. x the function:

`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`


If `sqrt(1-x^2)  + sqrt(1- y^2)` =  a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`


Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x


If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`


The function f(x) = cot x is discontinuous on the set ______.


`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.


`lim_("x"-> 0) ("cosec x - cot x")/"x"`  is equal to ____________.


`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.


If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then"  ("d"^2"y")/("dx"^2)` is ____________.


The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to


If y = sin–1x, then (1 – x2)y2 is equal to ______.


Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×