Advertisements
Advertisements
प्रश्न
Differentiate w.r.t. x the function:
`cot^(-1) [(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))]`, ` 0 < x < pi/2`
उत्तर
Let, y = `cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`
Now, `1 + sin x = sin^2 x/2 + cos^2 x/2 + 2 sin x/2 cos x/2`
`= (cos x/2 + sin x/2)`
`therefore sqrt(1 + sin x) = cos x/2 + sin x/2`
Similarly,
`sqrt(1 + sin x) = cos x/2 + sin x/2`
y = `cot^-1 [((cos x/2 + sin x/2) + (cos x/2 - sin x/2))/((cos x/2 + sin x/2) - (cos x/2 + sin x/2))]`
`= cot^-1 [(cos x/2 + sin x/2 + cos x/2 - sin x/2)/(cos x/2 + sin x/2 - cos x/2 + sin x/2)]`
`= cot^-1 [(2 cos x/2)/(2 sin x/2)]`
`= cot^-1 (cot x/2)`
y = `x/2`
On differentiating with respect to x,
`dy/dx = 1/2 * d/dx (x) = 1/2`
APPEARS IN
संबंधित प्रश्न
Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.
If `y=sin^-1(3x)+sec^-1(1/(3x)), ` find dy/dx
Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`
Find the derivative of the following function f(x) w.r.t. x, at x = 1 :
`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`
if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.
If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x2≤1, then find dy/dx.
Find `dy/dx` in the following:
`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`
Find `dy/dx` in the following:
`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Find `dy/dx` in the following:
`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Find `dx/dy` in the following:
`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`
Find `dy/dx` in the following:
`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x < 1/sqrt2`
Find `dy/dx` in the following:
`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`
Differentiate w.r.t. x the function:
`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`
Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`
Find the approximate value of tan−1 (1.001).
if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`
Solve `cos^(-1)(sin cos^(-1)x) = pi/2`
Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).
If y = (sec-1 x )2 , x > 0, show that
`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`
If y = sin-1 x + cos-1x find `(dy)/(dx)`.
If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`
`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.
`lim_("x"-> 0) ("cosec x - cot x")/"x"` is equal to ____________.
`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.
If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then" "dy"/"dx"` is ____________.
If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then" ("d"^2"y")/("dx"^2)` is ____________.
The derivative of sin x with respect to log x is ____________.
If y = sin–1x, then (1 – x2)y2 is equal to ______.
Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.
Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.