English

Differentiate w.r.t. x the function: cot-1[1+sinx+1-sinx1+sinx-1-sinx], 0<x<π2 - Mathematics

Advertisements
Advertisements

Question

Differentiate w.r.t. x the function:

`cot^(-1) [(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))]`, ` 0 < x < pi/2`

Sum

Solution

Let, y = `cot^-1 [(sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))]`

Now, `1 + sin x = sin^2  x/2  + cos^2  x/2 + 2 sin  x/2 cos  x/2`

`= (cos  x/2 + sin  x/2)`

`therefore sqrt(1 + sin x) = cos  x/2 + sin  x/2`

Similarly,

`sqrt(1 + sin x) = cos  x/2 + sin  x/2`

y = `cot^-1 [((cos  x/2 + sin  x/2) + (cos  x/2 - sin  x/2))/((cos  x/2 + sin  x/2) - (cos  x/2 + sin  x/2))]`

`= cot^-1  [(cos  x/2 + sin  x/2 + cos  x/2 - sin  x/2)/(cos  x/2 + sin  x/2 - cos  x/2 + sin  x/2)]`

`= cot^-1  [(2 cos  x/2)/(2  sin  x/2)]`

`= cot^-1  (cot  x/2)`

y = `x/2`

On differentiating with respect to x,

`dy/dx = 1/2 * d/dx (x) = 1/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.9 [Page 191]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.9 | Q 6 | Page 191

RELATED QUESTIONS

Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.


If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`

(a) y

(b) x

(c) y/x

(d) 0


Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`


Find the derivative of the following function f(x) w.r.t. x, at x = 1 : 

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`


if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.


If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x21, then find dy/dx.


Find `dy/dx` in the following:

`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`


Find `dy/dx` in the following:

`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dx/dy` in the following:

`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x  < 1/sqrt2`


Find `dy/dx` in the following:

`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`


Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`


If `xsqrt(1+y) + y  sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`


Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x


if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`


Solve `cos^(-1)(sin cos^(-1)x) = pi/2`


Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).


If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y"  "cos"^2"x" = 0`


If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`


If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.


If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`


The function f(x) = cot x is discontinuous on the set ______.


`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.


`lim_("x"-> 0) ("cosec x - cot x")/"x"`  is equal to ____________.


If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then"  "dy"/"dx"` is ____________.


If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then"  ("d"^2"y")/("dx"^2)` is ____________.


If y = sin–1x, then (1 – x2)y2 is equal to ______.


Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×