Advertisements
Advertisements
Question
The function f(x) = cot x is discontinuous on the set ______.
Options
{x = nπ : n ∈ Z}
{x = 2nπ : n ∈ Z}
`{x = (2"n" + 1)pi/2 ; "n" ∈ "Z"}`
`{x = ("n"pi)/2 ; "n" ∈ "Z"}`
Solution
The function f(x) = cot x is discontinuous on the set {x = nπ : n ∈ Z}.
Explanation:
Given that: f(x) = cot x
⇒ f(x) = `cosx/sinx`
We know that sin x = 0 if f(x) is discontinuous.
∴ If sin x = 0
∴ x = nπ, n ∈ nπ.
So, the given function f(x) is discontinuous on the set {x = nπ : n ∈ Z}.
APPEARS IN
RELATED QUESTIONS
Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.
If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`
(a) y
(b) x
(c) y/x
(d) 0
If `y=sin^-1(3x)+sec^-1(1/(3x)), ` find dy/dx
Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`
Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`
Find `dy/dx` in the following:
`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Differentiate w.r.t. x the function:
`cot^(-1) [(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))]`, ` 0 < x < pi/2`
Differentiate w.r.t. x the function:
`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`
Find the approximate value of tan−1 (1.001).
Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x
if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`
If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y" "cos"^2"x" = 0`
If y = sin-1 x + cos-1x find `(dy)/(dx)`.
If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`
If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`
Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.
`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.
`lim_("x"-> 0) ("cosec x - cot x")/"x"` is equal to ____________.
`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.
If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then" "dy"/"dx"` is ____________.
The derivative of sin x with respect to log x is ____________.
The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to
If y = sin–1x, then (1 – x2)y2 is equal to ______.
Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.
Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.