English

The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______. - Mathematics

Advertisements
Advertisements

Question

The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.

Options

  • R

  • `"R" - {1/2}`

  • `(0, oo)`

  • None of these

MCQ
Fill in the Blanks

Solution

The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is `"R" - {1/2}`.

Explanation:

Given that: f(x) = |2x − 1| sinx

Clearly, f(x) is not differentiable at x = `1/2`

R.H.L. = `"f'"(1/2) =  lim_("h" -> 0) ("f"(1/2 + "h") - "f"(1/2))/"h"`

= `lim_("h" -> 0) (|2(1/2 + "h") - 1|sin(1/2 + "h") - 0)/"h"`

= `lim_("h" -> 0) (|2"h"| sin((1 + 2"h")/2))/"h"`

= `2 sin (1/2)`

Also L.H.L. = `"f'"(1/2) =  lim_("h" -> 0) ("f"(1/2 - "h") - "f"(1/2))/(-"h")`

= `lim_("h" -> 0) (|2(1/2 - "h") - 1|[- sin (1/2 - "h")] - 0)/(-"h")`

= `(|-2"h"|[-sin(1/2 - "h")])/(-"h")`

= `- 2 sin (1/2)`

∴ R.H.L. = `"f'"(1/2)` ≠ L.H.L. `"f'"(1/2)`

So, the given function f(x) is not differentiable at x = `1/2`.

∴ f(x) is differentiable in `"R" - {1/2}`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 113]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 85 | Page 113

RELATED QUESTIONS

 If 'f' is continuous at x = 0, then find f(0).

`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`


Examine the following function for continuity:

f (x) = x – 5


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?

 


If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


Let f (x) = |sin x|. Then,


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


Examine the continuity of the followin function : 

  `{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`   


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


A continuous function can have some points where limit does not exist.


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


If f(x) = `x^2 sin  1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×