English

The Set of Points Where the Function F (X) Given by F (X) = |X − 3| Cos X is Differentiable, is (A) R (B) R − {3} (C) (0, ∞) (D) None of These - Mathematics

Advertisements
Advertisements

Question

The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is

Options

  • R

  • R − {3}

  • (0, ∞)

  • none of these

MCQ

Solution

(b)  

\[R - \left( 3 \right)\]

\[\left(\text {  LHD at x } = 3 \right) = \lim_{x \to 3^-} \frac{f\left( x \right) - f\left( 3 \right)}{x - 3}\]
\[\left( \text { LHD at x = 3 } \right) = \lim_{h \to 0} \frac{f\left( 3 - h \right) - f\left( 3 \right)}{3 - h - 3}\]
\[\left( \text { LHD at x = 3 } \right) = \lim_{h \to 0} \frac{f\left( 3 - h \right) - f\left( 3 \right)}{- h}\]
\[\left( \text { LHD at x = 3} \right) = \lim_{h \to 0} \frac{\left| 3 - h - 3 \right|\cos\left( 3 - h \right) - f\left( 3 \right)}{- h}\]
\[\left(\text{ LHD at x } = 3 \right) = \lim_{h \to 0} \frac{h\cos\left( 3 - h \right) - 0}{- h} = - \cos3\]
\[\left( \text { RHD at x } = 3 \right) = \lim_{x \to 3^+} \frac{f\left( x \right) - f\left( 3 \right)}{x - 3}\]
\[\left( \text { RHD at x = 3 } \right) = \lim_{h \to 0} \frac{f\left( 3 + h \right) - f\left( 3 \right)}{3 + h - 3}\]
\[\left( \text { RHD at x } = 3 \right) = \lim_{h \to 0} \frac{f\left( 3 + h \right) - f\left( 3 \right)}{h}\]
\[\left( \text { RHD at x = 3 } \right) = \lim_{h \to 0} \frac{\left| 3 + h - 3 \right|\cos\left( 3 + h \right) - f\left( 3 \right)}{h}\]
\[\left( \text { RHD at x } = 3 \right) = \lim_{h \to 0} \frac{h\cos\left( 3 + h \right) - 0}{h} = \cos3\]

So, f(x) is not differentiable at x = 3.
Also, f(x) is differentiable at all other points because both modulus and cosine functions are differentiable and the product of two differentiable function is differentiable.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.4 [Page 20]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.4 | Q 25 | Page 20

RELATED QUESTIONS

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Discuss the continuity of the following functions at the indicated point(s): 

(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 


Discuss the continuity of the function f(x) at the point x = 0, where  \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]

 


Determine the value of the constant k so that the function 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\] 


For what value of k is the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  continuous at x = 0?

 


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}5 , & \text{ if }  & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if }  & x \geq 10\end{cases}\]


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


If  \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals


Is every differentiable function continuous?


Give an example of a function which is continuos but not differentiable at at a point.


Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


The function f (x) =  |cos x| is


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


f(x) = `{{:(|x - 4|/(2(x - 4))",", "if"  x ≠ 4),(0",", "if"  x = 4):}` at x = 4


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×