Advertisements
Advertisements
Question
If \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals
Options
\[\frac{1}{2}\]
\[\frac{1}{3}\]
\[\frac{1}{4}\]
\[\frac{1}{6}\]
Solution
\[\frac{1}{2}\]
Given:
We have
(LHL at x = 0) = \[\lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( 0 - h \right) = \lim_{h \to 0} f\left( - h \right) = \lim_{h \to 0} a \sin \left( \frac{\pi}{2}\left( - h + 1 \right) \right) = a \sin \left( \frac{\pi}{2} \right) = a\]
(RHL at x = 0) = \[\lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( 0 + h \right) = \lim_{h \to 0} f\left( h \right) = \lim_{h \to 0} \frac{\tan h - \sin h}{h^3}\]
\[= \lim_{h \to 0} \frac{\frac{\sin h}{\cos h} - \sin h}{h^3}\]
\[ = \lim_{h \to 0} \frac{\frac{\sin h}{\cos h}\left( 1 - \cos h \right)}{h^3}\]
\[ = \lim_{h \to 0} \frac{\left( 1 - \cos h \right) \tan h}{h^3}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2} \tan h}{4 \times \frac{h^2}{4} \times h}\]
\[ = \frac{2}{4} \lim_{h \to 0} \frac{\sin^2 \frac{h}{2} \tan h}{\frac{h^2}{4} \times h}\]
\[ = \frac{1}{2} \lim_{h \to 0} \left( \frac{\sin \frac{h}{2}}{\frac{h}{2}} \right)^2 \times \lim_{h \to 0} \frac{\tan h }{ h }\]
\[ = \frac{1}{2} \times 1 \times 1\]
\[ = \frac{1}{2}\]
\[\text{ If } f\left( x \right) \text{ is continuous at x = 0, then } \]
\[ \lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right)\]
\[ \Rightarrow a = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
Examine the following function for continuity:
`f(x) = (x^2 - 25)/(x + 5), x != -5`
Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`
If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]
Find whether f(x) is continuous at x = 0.
Show that
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Show that
\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]
Show that
\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]
Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
Discuss the continuity of the f(x) at the indicated points:
(i) f(x) = | x | + | x − 1 | at x = 0, 1.
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?
Let f (x) = | x | + | x − 1|, then
The value of b for which the function
Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat:
If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\] is differentiable at x = 1, find a, b.
Is every continuous function differentiable?
The set of points where the function f (x) = x |x| is differentiable is
The function f (x) = e−|x| is
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`
`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
Examine the continuity of the following function :
`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`
The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`, 0 < x < 2
= 0, Otherwise
Find P( x ≤ 1)
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`
The function given by f (x) = tanx is discontinuous on the set ______.
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
y = |x – 1| is a continuous function.
f(x) = `{{:(3x + 5",", "if" x ≥ 2),(x^2",", "if" x < 2):}` at x = 2
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.