Advertisements
Advertisements
Question
The set of points where the function f (x) = x |x| is differentiable is
Options
\[\left( - \infty , \infty \right)\]
\[\left( - \infty , 0 \right) \cup \left( 0, \infty \right)\]
\[\left( 0, \infty \right)\]
\[\left[ 0, \infty \right]\]
Solution
(a) \[\left( - \infty , \infty \right)\]
\[\text{ We have }, \]
\[f\left( x \right) = x\left| x \right|\]
`⇒ f(x) {(-x^2, x<0),(0,x=0),(x^2 , x>0):}`
\[\text{ When, x < 0, we have }\]
\[ f\left( x \right) = - x^2 \text{which being a polynomial function is continuous and differentiable in} \left( - \infty , 0 \right)\]
\[\text{ When, x > 0, we have }\]
\[ f\left( x \right) = x^2 \text{which being a polynomial function is continuous and differentiable in} \left( 0, \infty \right)\]
\[\text{Thus possible point of non - differentiability of} f\left( x \right) is x = 0\]
\[\text{ Now , LHD} \left( at x = 0 \right) = \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{- x^2 - 0}{x}\]
\[ = \lim_{h \to 0} \frac{- \left( - h \right)^2}{- h}\]
\[ = \lim_{h \to 0} h\]
\[ = 0\]
\[\text{ And RHD} \left( \text{ at } x = 0 \right) = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^+} \frac{x^2 - 0}{x}\]
\[ = \lim_{h \to 0} \frac{h^2}{h}\]
\[ = \lim_{h \to 0} h\]
\[ = 0\]
\[ \therefore \text { LHD } \left( \text { at x } = 0 \right) =\text { RHD } \left(\text { at x } = 0 \right)\]
\[{\text{ So }, f\left( x \right) \text{ is also differentiable at } x} = 0\]
\[\text{i . e . }f\left( x \right) \text { is differentiable in }\left( - \infty , \infty \right)\]
APPEARS IN
RELATED QUESTIONS
Examine the following function for continuity:
`f (x)1/(x - 5), x != 5`
Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
Show that
is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1
If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is
The value of b for which the function
The function \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as
The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] continuous at x = 0, is
Show that f(x) = |x − 2| is continuous but not differentiable at x = 2.
Show that f(x) = x1/3 is not differentiable at x = 0.
Is every differentiable function continuous?
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
The function f (x) = |cos x| is
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is
`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?
Find the value of 'k' if the function
f(x) = `(tan 7x)/(2x)`, for x ≠ 0.
= k for x = 0.
is continuous at x = 0.
Examine the continuity of the following function :
f(x) = x2 - x + 9, for x ≤ 3
= 4x + 3, for x > 3
at x = 3.
Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
= `1/12`, For x = 0
Discuss the continuity of the function f(x) = sin x . cos x.
f(x) = `{{:(3x + 5",", "if" x ≥ 2),(x^2",", "if" x < 2):}` at x = 2
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = `{{:(3x - 8",", "if" x ≤ 5),(2"k"",", "if" x > 5):}` at x = 5
If f(x) = `x^2 sin 1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.
If f is continuous on its domain D, then |f| is also continuous on D.
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.
Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?