English

The Set of Points Where the Function F (X) = X |X| is Differentiable is (A) ( − ∞ , ∞ ) (B) ( − ∞ , 0 ) ∪ ( 0 , ∞ ) (C) ( 0 , ∞ ) (D) [ 0 , ∞ ] - Mathematics

Advertisements
Advertisements

Question

The set of points where the function f (x) = x |x| is differentiable is 

 

Options

  • \[\left( - \infty , \infty \right)\]

  • \[\left( - \infty , 0 \right) \cup \left( 0, \infty \right)\]

  • \[\left( 0, \infty \right)\]

  • \[\left[ 0, \infty \right]\]

MCQ

Solution

(a) \[\left( - \infty , \infty \right)\]

\[\text{ We have }, \]
\[f\left( x \right) = x\left| x \right|\]

`⇒ f(x) {(-x^2, x<0),(0,x=0),(x^2 , x>0):}`
\[\text{ When, x < 0, we have }\]
\[ f\left( x \right) = - x^2 \text{which being a polynomial function is continuous and differentiable in} \left( - \infty , 0 \right)\]
\[\text{ When, x > 0, we have }\]
\[ f\left( x \right) = x^2 \text{which being a polynomial function is continuous and differentiable in} \left( 0, \infty \right)\]
\[\text{Thus possible point of non - differentiability of} f\left( x \right) is x = 0\]
\[\text{ Now , LHD} \left( at x = 0 \right) = \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{- x^2 - 0}{x}\]
\[ = \lim_{h \to 0} \frac{- \left( - h \right)^2}{- h}\]
\[ = \lim_{h \to 0} h\]
\[ = 0\]
\[\text{ And RHD} \left( \text{ at } x = 0 \right) = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^+} \frac{x^2 - 0}{x}\]
\[ = \lim_{h \to 0} \frac{h^2}{h}\]
\[ = \lim_{h \to 0} h\]
\[ = 0\]
\[ \therefore \text { LHD } \left( \text { at x } = 0 \right) =\text {  RHD } \left(\text {  at x } = 0 \right)\]
\[{\text{ So }, f\left( x \right) \text{ is also differentiable at } x} = 0\]
\[\text{i . e . }f\left( x \right) \text { is differentiable in }\left( - \infty , \infty \right)\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.4 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.4 | Q 3 | Page 17

RELATED QUESTIONS

Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if }  x = 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


Prove that
\[f\left( x \right) = \begin{cases}\frac{\sin x}{x} , & x < 0 \\ x + 1 , & x \geq 0\end{cases}\] is everywhere continuous.

 


If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


The value of b for which the function 

\[f\left( x \right) = \begin{cases}5x - 4 , & 0 < x \leq 1 \\ 4 x^2 + 3bx , & 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 

The function  \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as

 


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Show that f(x) = x1/3 is not differentiable at x = 0.


Is every differentiable function continuous?


If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]


The function f (x) =  |cos x| is


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is 


`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Examine the continuity of the following function :
f(x) = x2 - x + 9,          for x ≤ 3
      = 4x + 3,               for x > 3 
at x = 3.


Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
                  = `1/12`,                      For x = 0


Discuss the continuity of the function f(x) = sin x . cos x.


f(x) = `{{:(3x + 5",", "if"  x ≥ 2),(x^2",", "if"  x < 2):}` at x = 2


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


If f(x) = `x^2 sin  1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


If f is continuous on its domain D, then |f| is also continuous on D.


`lim_("x" -> 0) (2  "sin x - sin"  2 "x")/"x"^3` is equal to ____________.


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×