Advertisements
Advertisements
Question
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
Options
continuous and differentiable at x = 3
continuous but not differentiable at x = 3
differentiable nut not continuous at x = 3
neither differentiable nor continuous at x = 3
Solution
(d) neither differentiable nor continuous at x = 3
We have,
\[f\left( x \right) = \left| 3 - x \right| + \left( 3 + x \right), \text { where } \left( x \right) \text{denotes the least integer greater than or equal to} x . \]
`f(x) = {(3-x +3+3,2<x<3),(-3 +x + 3 +4,3<x<4):}`
`⇒ f(x) = {(-x +9,2<x<3),(x+4 , 3<x<4):}`
Here,
\[\left( \text { LHL at x } = 3 \right) = \lim_{x \to 3^-} f\left( x \right) = \lim_{x \to 3^-} \left( - x + 9 \right) = - 3 + 9 = 6\]
\[\left( \text { RHL at x }= 3 \right) = \lim_{x \to 3^+} f\left( x \right) = \lim_{x \to 3^-} \left( x + 4 \right) = 3 + 4 = 7\]
\[\text { Since, } \left( \text { LHL at x } = 3 \right) \neq \left( \text { RHL at x }= 3 \right)\]
\[\text{Hence, given function is not continuous at x} = 3\]
\[\text{Therefore, the function will also not be differentiable at} x = 3\]
APPEARS IN
RELATED QUESTIONS
Examine the following function for continuity:
`f (x)1/(x - 5), x != 5`
If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Show that
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]
If \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if } & x = 2\end{cases}\] is continuous at x = 2, find k.
Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when} & x \neq 0 \\ k ,\text{ when } & x = 0\end{cases}\] is continuous at x = 0;
Discuss the continuity of the f(x) at the indicated points: f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions:
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at \[x = \frac{\pi}{2}\], if
Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat:
If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\] is differentiable at x = 1, find a, b.
Discuss the continuity and differentiability of
If f (x) is differentiable at x = c, then write the value of
Let f (x) = |x| and g (x) = |x3|, then
The function f (x) = sin−1 (cos x) is
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .
`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`, x ≠ 0 is continuous at x = 0 , then find f(0).
If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
Discuss the continuity of the function f(x) = sin x . cos x.
The function given by f (x) = tanx is discontinuous on the set ______.
y = |x – 1| is a continuous function.
Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.