English

If F ( X ) = { 1 1 + E 1 / X , X ≠ 0 0 , X = 0 Then F (X) is (A) Continuous as Well as Differentiable at X = 0 (B) Continuous but Not Differentiable at X = 0 - Mathematics

Advertisements
Advertisements

Question

If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\]  then f (x) is 

Options

  • continuous as well as differentiable at x = 0

  • continuous but not differentiable at x = 0

  • differentiable but not continuous at x = 0

  • none of these

MCQ

Solution

(d) none of these 

we have,

\[(\text{ LHL at x } = 0 )\]
\[ = {lim}_{x \to 0^-} f(x) = {lim}_{h \to 0} f(0 - h) = {lim}_{h \to 0} f( - h)\]
\[ = {lim}_{h \to 0} \frac{1}{1 + e^{1/ - h}}\]
\[ = {lim}_{h \to 0} \frac{1}{1 + \frac{1}{e^{1/h}}} [ {lim}_{h \to 0} \frac{1}{e^{1/h}} = 0] \]
\[ = \frac{1}{1 + 0}\]
\[ = 1\]
\[(\text { RHL at x } = 0) \]
\[ = {lim}_{x \to 0^+} f(x) = {lim}_{h \to 0} f(0 + h)\]
\[ = {lim}_{h \to 0} \frac{1}{1 + e^{1/h}}\]
\[ = \frac{1}{1 + e^{1/0}} = \frac{1}{1 + e^\infty} = \frac{1}{1 + \infty} \]

So, f(x) is not continuous at x = 0
Differentiability at x = 0

\[(\text { LHD at x } = 0 )\]
\[ = {lim}_{x \to 0^-} \frac{f(x) - f(0)}{x - 0}\]
\[ = {lim}_{h \to 0} \frac{f(0 - h) - f(0)}{0 - h - 0}\]
\[ = {lim}_{h \to 0} \frac{f( - h) - 0}{- h}\]
\[ = {lim}_{h \to 0} \frac{\frac{1}{1 + e^{1/ - h}}}{- h}\]
\[ = {lim}_{h \to 0} \frac{\frac{1}{1 + \frac{1}{e^{1/ h}}}}{- h} \]
\[ = {lim}_{h \to 0} \frac{\frac{1}{1 + 0}}{- h} = {lim}_{h \to 0} \frac{1}{- h} = - \infty \]
\[(\text { RHD at x } = 0) \]
\[ = {lim}_{x \to 0^+} \frac{f(x) - f(0)}{x - 0}\]
\[ = {lim}_{h \to 0} \frac{f(0 + h) - f(0)}{0 + h - 0}\]
\[ = {lim}_{h \to 0} \frac{f(h) - 0}{h}\]
\[ = {lim}_{h \to 0} \frac{\frac{1}{1 + e^{1/ h}}}{h} = \infty \]
\[\text{So, f(x) is also not differentiable at x} = 0 . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.4 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.4 | Q 23 | Page 19

RELATED QUESTIONS

If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`

is continuous at x = 0, then find the values of a and b.


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]


Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 


For what value of k is the function 

\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Find whether the function is differentiable at x = 1 and x = 2 

\[f\left( x \right) = \begin{cases}x & x \leq 1 \\ \begin{array} 22 - x  \\ - 2 + 3x - x^2\end{array} & \begin{array}11 \leq x \leq 2 \\ x > 2\end{array}\end{cases}\]

Write the points where f (x) = |loge x| is not differentiable.


Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


The function f (x) = sin−1 (cos x) is


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\] 

then at x = 0, f (x)


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


Let f (x) = |sin x|. Then,


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×