English

Find Whether the Function is Differentiable at X = 1 and X = 2 F ( X ) = ⎧ ⎨ ⎩ X X ≤ 1 − X − 2 + 3 X − X 2 ≤ X ≤ 2 X > 2 - Mathematics

Advertisements
Advertisements

Question

Find whether the function is differentiable at x = 1 and x = 2 

\[f\left( x \right) = \begin{cases}x & x \leq 1 \\ \begin{array} 22 - x  \\ - 2 + 3x - x^2\end{array} & \begin{array}11 \leq x \leq 2 \\ x > 2\end{array}\end{cases}\]
Answer in Brief

Solution

\[f\left( x \right) = \begin{cases}x & x \leq 1 \\ \begin{array} 22 - x  \\ - 2 + 3x - x^2\end{array} & \begin{array}11 \leq x \leq 2 \\ x > 2\end{array}\end{cases}\]

\[ \Rightarrow f'\left( x \right) = \begin{cases}1 & x \leq 1 \\ \begin{array} -- 1 \\ 3 - 2x\end{array} & \begin{array}11 \leq x \leq 2 \\ x > 2\end{array}\end{cases}\]

\[\text { Now }, \]
\[\text { LHL } = \lim_{x \to 1^-} f'\left( x \right) = \lim_{x \to 1^-} 1 = 1\]
\[\text { RHL } = \lim_{x \to 1^+} f'\left( x \right) = \lim_{x \to 1^+} - 1 = - 1\]
\[\text { Since , at x } = 1, \text { LHL} \neq \text { RHL }\]
\[\text { Hence }, f\left( x \right) \text { is not differentiable at } x = 1\]
\[\text { Again }, \]
\[\text { LHL }= \lim_{x \to 2^-} f'\left( x \right) = \lim_{x \to 2^-} - 1 = - 1\]
\[\text { RHL }= \lim_{x \to 2^+} f'\left( x \right) = \lim_{x \to 2^+} 3 - 2x = 3 - 4 = - 1\]
\[\text { Since , at x = 2, LHL = RHL}\]
\[\text { Hence,} f\left( x \right) \text { is differentiable at } x = 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.1 | Q 6 | Page 10

RELATED QUESTIONS

Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 


For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


Prove that
\[f\left( x \right) = \begin{cases}\frac{\sin x}{x} , & x < 0 \\ x + 1 , & x \geq 0\end{cases}\] is everywhere continuous.

 


Define continuity of a function at a point.

 

If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


Let f (x) = | x | + | x − 1|, then


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


If f is defined by f (x) = x2, find f'(2).


Discuss the continuity and differentiability of f (x) = |log |x||.


Define differentiability of a function at a point.

 

The function f (x) = sin−1 (cos x) is


The function f (x) = e|x| is


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`


Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3`   for x = 1


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


Examine the continuity of the following function :
f(x) = x2 - x + 9,          for x ≤ 3
      = 4x + 3,               for x > 3 
at x = 3.


Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
                  = `1/12`,                      For x = 0


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`


If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = |x| + |x − 1| at x = 1


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


`lim_("x" -> 0) (2  "sin x - sin"  2 "x")/"x"^3` is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×