Advertisements
Advertisements
Question
The function f (x) = e−|x| is
Options
continuous everywhere but not differentiable at x = 0
continuous and differentiable everywhere
not continuous at x = 0
none of these
Solution 1
continuous everywhere but not differentiable at x = 0
Given:
`f(x) = e^(-|x|) = {(e^x , xge0),(e^(-x) ,x< 0):}`
\[\text{ Continuity }: \]
\[ \lim_{x \to 0^-} f(x) \]
\[ = \lim_{h \to 0} f(0 - h) \]
\[ = \lim_{h \to 0} e^{- (0 - h)} \]
\[ = \lim_{h \to 0} e^h \]
\[ = 1\]
RHL at x = 0
\[\lim_{x \to 0^+} f(x) \]
\[ = \lim_{h \to 0} f(0 + h) \]
\[ = \lim_{h \to 0} e^{(0 + h)} \]
\[ = 1\]
and f(0) =
Thus,
Hence, function is continuous at x = 0
Differentiability at x = 0
(LHD at x = 0)
\[\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0}\]
\[ = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{0 - h - 0}\]
\[ = \lim_{h \to 0} \frac{e^{- (0 - h)} - 1}{- h}\]
\[ = \lim_{h \to 0} \frac{e^h}{h} \]
\[ = \infty\]
Therefore, left hand derivative does not exist.
Hence, the function is not differentiable at x = 0.
Solution 2
continuous everywhere but not differentiable at x = 0
Explanation:
- Continuity: The function f(x) = e−∣x∣ is continuous everywhere because both e−x and ex are continuous functions, and the absolute value function ∣x∣ does not introduce any discontinuities.
- Differentiability: At x = 0, f(x) is not differentiable because the derivative from the left and the right do not match.
- For x > 0: f′(x) = −e−x
- For x < 0: f′(x) = ex
- At x = 0: The derivative changes abruptly due to the absolute value term, making the function non-differentiable at x = 0.
Thus, f(x) is continuous everywhere but not differentiable at x = 0.
APPEARS IN
RELATED QUESTIONS
Find the value of 'k' if the function
`f(X)=(tan7x)/(2x) , "for " x != 0 `
`=k`, for x=0
is continuos at x=0
Examine the following function for continuity:
`f (x)1/(x - 5), x != 5`
A function f(x) is defined as,
For what value of k is the function
\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\]
Find all point of discontinuity of the function
If \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals
If \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then
If \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
If \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to
Show that f(x) = x1/3 is not differentiable at x = 0.
Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat:
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.
If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\] then f (x) is
Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is
Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4
= 10 for x = 4 at x = 4
Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3` for x = 1
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
If f is continuous at x = 0, then find f (0).
Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
Examine the continuity of the following function :
`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.
Show that the function f defined by f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.
If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)` so that f (x) becomes continuous at x = `pi/4`
The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.
A continuous function can have some points where limit does not exist.
Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1
f(x) = `{{:(|x - 4|/(2(x - 4))",", "if" x ≠ 4),(0",", "if" x = 4):}` at x = 4
f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
f(x) = |x| + |x − 1| at x = 1
f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "if" x ≠ 2),("k"",", "if" x = 2):}` at x = 2
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.