English

Show that the Function F ( X ) = { | 2 X − 3 | [ X ] , X ≥ 1 Sin ( π X 2 ) , X < 1 is Continuous but Not Differentiable at X = 1. - Mathematics

Advertisements
Advertisements

Question

Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.

Answer in Brief

Solution

Given: 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\]
Continuity at = 1:
(LHL at x = 1) = 
\[\lim_{x \to 1^-} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} \sin\left( \frac{\pi (1 - h)}{2} \right) = \sin\frac{\pi}{2} = 1\]
(RHL at = 1) = 
\[\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1 + h) = \lim_{h \to 0} \left| 2(1 + h) - 3 \right|\left[ 1 + h \right] = \lim_{h \to 0} \left| 2(1 + h) - 3 \right| = 1\]

Hence, (LHL at x = 1) = (RHL at x = 1)

Differentiability at = 1:

\[\left(\text {  LHD at x } = 1 \right) = \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[\left( \text { LHD at x } = 1 \right) = \lim_{h \to 0} \frac{f\left( 1 - h \right) - f\left( 1 \right)}{1 - h - 1}\]
\[\left( \text { LHD at x = 1 } \right) = \lim_{h \to 0} \frac{f\left( 1 - h \right) - f\left( 1 \right)}{- h}\]
\[\left( \text { LHD at x } = 1 \right) = \lim_{h \to 0} \frac{\sin\left( \frac{\pi\left( 1 - h \right)}{2} \right) - 1}{- h}\]
\[\left( \text { LHD at x = 1 } \right) = \lim_{h \to 0} \frac{\cos\frac{\ pih}{2} - 1}{- h}\]
\[\left( \text { LHD at x = 1 } \right) = - \frac{\pi}{2} \lim_{h \to 0} \frac{\cos\frac{\ pih}{2} - 1}{\frac{\pi}{2}h} = 0\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{f\left( 1 + h \right) - f\left( 1 \right)}{1 + h - 1}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{f\left( 1 + h \right) - f\left( 1 \right)}{h}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{- \left( 2\left( 1 + h \right) - 3 \right) - 1}{h}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{- 2h}{h} = - 2\]

LHD ≠ RHD
Hence, the function is continuous but not differentiable at x = 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.1 | Q 9 | Page 10

RELATED QUESTIONS

Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\] 


For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if }  & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\]  is continuous at x = 4, find ab.

 


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

\[f\left( x \right) = \begin{cases}k( x^2 - 2x), \text{ if }  & x < 0 \\ \cos x, \text{ if }  & x \geq 0\end{cases}\] at x = 0

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5


Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if }  x < \frac{\pi}{2} \\ a , & \text{ if }  x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if }  x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.

 

If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


Given the function  
\[f\left( x \right) = \frac{1}{x + 2}\] . Find the points of discontinuity of the function f(f(x)).

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


The function 

\[f\left( x \right) = \frac{4 - x^2}{4x - x^3}\]

 


The function  \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]

 


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


If  \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

If f is defined by f (x) = x2, find f'(2).


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


Let f (x) = |x| and g (x) = |x3|, then


 If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


The function f(x) = |x| + |x – 1| is ______.


The value of k which makes the function defined by f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}`, continuous at x = 0 is ______.


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = `{{:(x^2/2",",  "if"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "if"  1 < x ≤ 2):}` at x = 1


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


If f(x) = `x^2 sin  1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×