Advertisements
Advertisements
Question
Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if } x < \frac{\pi}{2} \\ a , & \text{ if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if } x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.
Solution
Given:
\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if } x < \frac{\pi}{2} \\ a , & \text{ if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if } x > \frac{\pi}{2}\end{array} . \right.\] ]
We have
(LHL at x = \[\frac{\pi}{2}\]
\[= \lim_{h \to 0} \left( \frac{1 - \sin^3 \left( \frac{\pi}{2} - h \right)}{3 \cos^2 \left( \frac{\pi}{2} - h \right)} \right)\]
\[ = \lim_{h \to 0} \left( \frac{1 - \cos^3 h}{3 \sin^2 h} \right)\]
\[ = \frac{1}{3} \lim_{h \to 0} \left( \frac{\left( 1 - \cosh \right)\left( 1 + \cos^2 h + \cosh \right)}{\left( 1 - \cosh \right)\left( 1 + \cosh \right)} \right)\]
\[ = \frac{1}{3} \lim_{h \to 0} \left( \frac{\left( 1 + \cos^2 h + \text{ cos } h \right)}{\left( 1 + \text{ cos }h \right)} \right)\]
\[ = \frac{1}{3}\left( \frac{1 + 1 + 1}{1 + 1} \right) = \frac{1}{2}\]
(RHL at x = \[\frac{\pi}{2}\]
\[\lim_{x \to \frac{\pi}{2}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{2} + h \right)\]
\[= \lim_{h \to 0} \left( \frac{b\left[ 1 - \sin\left( \frac{\pi}{2} + h \right) \right]}{\left[ \pi - 2\left( \frac{\pi}{2} + h \right) \right]^2} \right)\]
\[ = \lim_{h \to 0} \left( \frac{b\left( 1 - \text{ cos } h \right)}{\left[ - 2h \right]^2} \right)\]
\[ = \lim_{h \to 0} \left( \frac{2b \sin^2 \frac{h}{2}}{4 h^2} \right)\]
\[ = \lim_{h \to 0} \left( \frac{2b \sin^2 \frac{h}{2}}{16\frac{h^2}{4}} \right)\]
\[ = \frac{b}{8} \lim_{h \to 0} \left( \frac{\sin\frac{h}{2}}{\frac{h}{2}} \right)^2 \]
\[ = \frac{b}{8} \times 1\]
\[ = \frac{b}{8}\]
Also,
\[f\left( \frac{\pi}{2} \right) = a\]
If f(x) is continuous at x =
\[\frac{\pi}{2}\]then
\[\Rightarrow \frac{1}{2} = \frac{b}{8} = a\]
\[\Rightarrow a = \frac{1}{2} \text{ and } b = 4\]
APPEARS IN
RELATED QUESTIONS
If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`
is continuous at x = 0, then find the values of a and b.
Examine the following function for continuity:
`f(x) = (x^2 - 25)/(x + 5), x != -5`
A function f(x) is defined as,
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the function f(x) at the point x = 0, where \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?
Find f (0), so that \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\] becomes continuous at x = 0.
The function
If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is
Let f (x) = | x | + | x − 1|, then
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
If \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals
Find whether the function is differentiable at x = 1 and x = 2
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
Is every continuous function differentiable?
If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\]
then at x = 0, f (x)
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .
Examine the continuity of the following function :
f(x) = x2 - x + 9, for x ≤ 3
= 4x + 3, for x > 3
at x = 3.
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
Show that the function f defined by f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.
Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}`
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
f(x) = `{{:(x^2/2",", "if" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "if" 1 < x ≤ 2):}` at x = 1
f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}` at x = 0
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",", "if" 0 ≤ x < 2),((x - 1)x",", "if" 2 ≤ x < 3):}` at x = 2
The composition of two continuous function is a continuous function.
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.