English

Find F (0), So that F ( X ) = X 1 − √ 1 − X Becomes Continuous at X = 0. - Mathematics

Advertisements
Advertisements

Question

Find f (0), so that  \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\]  becomes continuous at x = 0.

 

Sum

Solution

if \[f\left( x \right)\]is continuous at x = 0, then  
\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]       ...(1)

Given:

\[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\]

\[\Rightarrow f\left( x \right) = \frac{x\left( 1 + \sqrt{1 - x} \right)}{\left( 1 - \sqrt{1 - x} \right)\left( 1 + \sqrt{1 - x} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{x\left( 1 + \sqrt{1 - x} \right)}{1 - \left( 1 - x \right)}\]
\[ \Rightarrow f\left( x \right) = \left( 1 + \sqrt{1 - x} \right)\]

\[\lim_{x \to 0} \left( 1 + \sqrt{1 - x} \right) = f\left( 0 \right) \left[ \text{ From eq}  . (1) \right]\]
\[\Rightarrow f\left( 0 \right) = 2\]

So, for 

\[f\left( 0 \right) = 2\], the function f(x) becomes continuous at x = 0.
shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.3 [Page 41]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.3 | Q 3 | Page 41

RELATED QUESTIONS

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


 If 'f' is continuous at x = 0, then find f(0).

`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the function f(x) at the point x = 0, where  \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]

 


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\frac{e^x - 1}{\log_e (1 + 2x)}, & \text{ if }x \neq 0 \\ 7 , & \text{ if } x = 0\end{cases}\]

Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?

 


The function 

\[f\left( x \right) = \frac{4 - x^2}{4x - x^3}\]

 


If  \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (ab) for which f (x) cannot be continuous at x = 1, is

 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

Show that the function 

\[f\left( x \right) = \begin{cases}x^m \sin\left( \frac{1}{x} \right) & , x \neq 0 \\ 0 & , x = 0\end{cases}\]

(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0


The function f (x) = sin−1 (cos x) is


The set of points where the function f (x) = x |x| is differentiable is 

 


The function f (x) = e|x| is


If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]


Find the value of k for which the function f (x ) =  \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .

 
 

Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3`   for x = 1


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Examine the continuity of the following function :

`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


The function given by f (x) = tanx is discontinuous on the set ______.


The function f(x) = |x| + |x – 1| is ______.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = |x| + |x − 1| at x = 1


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


If f is continuous on its domain D, then |f| is also continuous on D.


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×