Advertisements
Advertisements
Question
f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if" x ≠ 2),(5",", "if" x = 2):}` at x = 2
Solution
We have, f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if" x ≠ 2),(5",", "if" x = 2):}` at x = 2.
At x = 2
L.H.L. = `lim_(x -> 2^-) (2x^2 - 3x - 2)/(x - 2)`
= `lim_("h" -> 0) (2(2 - "h")^2 - 3(2 - "h") - 2)/((2 - "h") - 2)`
= `lim_("h" -> 0) (8 + 2"h"^2 - 8"h" - 6 + 3"h" - 2)/(-"h")`
= `lim_("h" -> 0) (2"h"^2 - 5"h")/(-"h")`
= `lim_("h" -> 0) ("h"(2"h" - 5))/(-"h")` = 5
R.H.L. = `lim_(x -> 2^+) (2x^2 - 3x - 2)/(x - 2)`
= `lim_("h" -> 0) (2(2 + "h")^2 - 3(2 + "h") - 2)/((2 + "h") - 2)`
= `lim_("h" -> 0) (8 + 2"h"^2 + 8"h" - 6 - 3"h" - 2)/"h"`
= `lim_("h" -> 0) (2"h"^2 + 5"h")/"h"`
= `lim_("h" -> 0) ("h"(2"h" + 5))/"h"` = 5
Also f(2) = 5 ....(Given)
∴ L.H.L. = R.H.L. = f(2)
So, f(x) is continuous at x = 2.
APPEARS IN
RELATED QUESTIONS
Examine the following function for continuity:
f (x) = x – 5
A function f(x) is defined as,
Find the value of 'a' for which the function f defined by
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1
If \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] continuous at x = 0, is
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Discuss the continuity and differentiability of
Give an example of a function which is continuos but not differentiable at at a point.
Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
The function f (x) = |cos x| is
Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is
Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4
= 10 for x = 4 at x = 4
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
The function given by f (x) = tanx is discontinuous on the set ______.
f(x) = `{{:(|x|cos 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.
The value of k (k < 0) for which the function f defined as
f(x) = `{((1-cos"kx")/("x"sin"x")"," "x" ≠ 0),(1/2"," "x" = 0):}`
is continuous at x = 0 is:
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`