हिंदी

F(x) = ,if,if{2x2-3x-2x-2,if x≠25,if x=2 at x = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2

योग

उत्तर

We have, f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2.

At x = 2

L.H.L. = `lim_(x -> 2^-) (2x^2 - 3x - 2)/(x - 2)`

= `lim_("h" -> 0) (2(2 - "h")^2 - 3(2 - "h") - 2)/((2 - "h") - 2)`

= `lim_("h" -> 0) (8 + 2"h"^2 - 8"h" - 6 + 3"h" - 2)/(-"h")`

= `lim_("h" -> 0) (2"h"^2 - 5"h")/(-"h")`

= `lim_("h" -> 0) ("h"(2"h" - 5))/(-"h")` = 5

R.H.L. = `lim_(x -> 2^+) (2x^2 - 3x - 2)/(x - 2)`

= `lim_("h" -> 0) (2(2 + "h")^2 - 3(2 + "h") - 2)/((2 + "h") - 2)`

= `lim_("h" -> 0) (8 + 2"h"^2 + 8"h" - 6 - 3"h" - 2)/"h"`

= `lim_("h" -> 0) (2"h"^2 + 5"h")/"h"`

= `lim_("h" -> 0) ("h"(2"h" + 5))/"h"` = 5

Also f(2) = 5  ....(Given)

∴ L.H.L. = R.H.L. = f(2)

So, f(x) is continuous at x = 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ १०७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 4 | पृष्ठ १०७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Find the value of 'k' if the function

`f(X)=(tan7x)/(2x) ,  "for " x != 0 `

`=k`,            for x=0

is continuos at x=0


Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


A function f(x) is defined as,

\[f\left( x \right) = \begin{cases}\frac{x^2 - x - 6}{x - 3}; if & x \neq 3 \\ 5 ; if & x = 3\end{cases}\]  Show that f(x) is continuous that x = 3.

Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


Given the function  
\[f\left( x \right) = \frac{1}{x + 2}\] . Find the points of discontinuity of the function f(f(x)).

If  \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Define differentiability of a function at a point.

 

Give an example of a function which is continuos but not differentiable at at a point.


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`


 If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`,  x ≠ 0 is continuous at x = 0 , then find f(0).


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)`  so that f (x) becomes continuous at x = `pi/4`


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×