हिंदी

A Function F(X) is Defined As, F ( X ) = { X 2 − X − 6 X − 3 ; I F X ≠ 3 5 ; I F X = 3 Show that F(X) is Continuous that X = 3. - Mathematics

Advertisements
Advertisements

प्रश्न

A function f(x) is defined as,

\[f\left( x \right) = \begin{cases}\frac{x^2 - x - 6}{x - 3}; if & x \neq 3 \\ 5 ; if & x = 3\end{cases}\]  Show that f(x) is continuous that x = 3.

उत्तर

Given: 

\[f\left( x \right) = \binom{\frac{x^2 - x - 6}{x - 3}, x \neq 3}{5, x = 3}\]

We observe

(LHL at = 3) = 

\[\lim_{x \to 3^-} f\left( x \right) = \lim_{h \to 0} f\left( 3 - h \right)\]
\[\lim_{h \to 0} \frac{\left( 3 - h \right)^2 - \left( 3 - h \right) - 6}{\left( 3 - h \right) - 3} = \lim_{h \to 0} \frac{9 + h^2 - 6h - 3 + h - 6}{- h} = \lim_{h \to 0} \frac{h^2 - 5h}{- h} = \lim_{h \to 0} \left( 5 - h \right) = 5\]

And, (RHL at = 3)​ = 

\[\lim_{x \to 3^+} f\left( x \right) = \lim_{h \to 0} f\left( 3 + h \right)\]
\[\lim_{h \to 0} \frac{\left( 3 + h \right)^2 - \left( 3 + h \right) - 6}{\left( 3 + h \right) - 3} = \lim_{h \to 0} \frac{9 + h^2 + 6h - 3 - h - 6}{h} = \lim_{h \to 0} \frac{h^2 + 5h}{h} = \lim_{h \to 0} \left( 5 + h \right) = 5\]

Also, 

\[f\left( 3 \right) = 5\]
\[\therefore \lim_{x \to 3^+} f\left( x \right) = \lim_{x \to 3^-} f\left( x \right) = f\left( 3 \right)\]

Hence, 

\[f\left( x \right)\]  is continuous at
\[x = 3\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.1 | Q 2 | पृष्ठ १६

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Examine the following function for continuity:

f (x) = x – 5


Examine the following function for continuity:

f(x) = | x – 5|


If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]

Find whether f(x) is continuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{2\left| x \right| + x^2}{x}, & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]

Show that 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]


Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if }  x < \frac{\pi}{2} \\ a , & \text{ if }  x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if }  x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.

 

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if }  x = 0\end{cases}\]


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


Is every differentiable function continuous?


The function f (x) = sin−1 (cos x) is


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?


 If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`,  x ≠ 0 is continuous at x = 0 , then find f(0).


If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)`  so that f (x) becomes continuous at x = `pi/4`


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


The value of k which makes the function defined by f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}`, continuous at x = 0 is ______.


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×