हिंदी

The Function F (X) = Sin−1 (Cos X) is (A) Discontinuous at X = 0 (B) Continuous at X = 0 (C) Differentiable at X = 0 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The function f (x) = sin−1 (cos x) is

विकल्प

  • discontinuous at x = 0

  • continuous at x = 0

  • differentiable at x = 0

  • none of these

MCQ

उत्तर

(b) continuous at x = 0 

Given:  

\[f(x) = \sin^{- 1} \left( \cos x \right) .\]

Continuity at x = 0: 

We have,
(LHL at x = 0) 

\[\lim_{x \to 0^-} f(x) \]
\[ = \lim_{h \to 0} \sin^{- 1} \left\{ \cos\left( 0 - h \right) \right\}\]
\[ = \lim_{h \to 0} \sin^{- 1} \left( \cos h \right)\]
\[ = \sin^{- 1} \left( 1 \right)\]
\[ = \frac{\pi}{2}\]

(RHL at x = 0)

\[\lim_{x \to 0^+} f\left( x \right)\]
\[ = \lim_{h \to 0} \sin^{- 1} \cos\left( 0 + h \right)\]
\[ = \lim_{h \to 0} \sin^{- 1} \left( \cos h \right)\]
\[ = \sin^{- 1} \left( 1 \right) \]
\[ = \frac{\pi}{2}\]

\[f(0) = \sin^{- 1} \left( \cos 0 \right) \]
\[ = \sin^{- 1} \left( 1 \right)\]
\[ = \frac{\pi}{2}\]

\[\lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0} \]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \cos\left( 0 - h \right) - \frac{\pi}{2}}{- h} \]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \cos\left( - h \right) - \frac{\pi}{2}}{- h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \cos\left( h \right) - \frac{\pi}{2}}{- h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left\{ \sin \left( \frac{\pi}{2} - h \right) \right\} - \frac{\pi}{2}}{- h}\]
\[ = \lim_{h \to 0} \frac{- h}{- h}\]
\[ = 1\]

RHD at x = 0

\[\lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0} \]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \cos\left( 0 + h \right) - \frac{\pi}{2}}{h} \]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \cos\left( h \right) - \frac{\pi}{2}}{h}\]
\[ = \lim_{h \to 0} \frac{\sin^{- 1} \left\{ \sin \left( \frac{\pi}{2} - h \right) \right\} - \frac{\pi}{2}}{- h}\]
\[ = \lim_{h \to 0} \frac{- h}{h}\]
\[ = - 1\]

\[\therefore LHD \neq RHD\]

Hence, the function is not differentiable at x = 0 but is continuous at x = 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.4 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.4 | Q 2 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Find the value of 'k' if the function

`f(X)=(tan7x)/(2x) ,  "for " x != 0 `

`=k`,            for x=0

is continuos at x=0


Examine the following function for continuity:

f (x) = x – 5


Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


Let f (x) = | x | + | x − 1|, then


The points of discontinuity of the function 

\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\] 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Discuss the continuity and differentiability of f (x) = |log |x||.


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

Give an example of a function which is continuos but not differentiable at at a point.


Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


The function f (x) =  |cos x| is


If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\]  then f (x) is 


The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


If f is continuous at x = 0, then find f (0). 

Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Examine the continuity of the following function :

`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


The function f(x) = |x| + |x – 1| is ______.


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×