हिंदी

The Function F (X) = |Cos X| is - Mathematics

Advertisements
Advertisements

प्रश्न

The function f (x) =  |cos x| is

विकल्प

  • differentiable at x = (2n + 1) π/2, n ∈ Z

  •  continuous but not differentiable at x = (2n + 1) π/2, n ∈ Z

  • neither differentiable nor continuous at x = n ∈ Z

  •  none of these

MCQ
संक्षेप में उत्तर

उत्तर

(b) continuous but not differentiable at x = (2n + 1) π/2, n ∈ Z 

We have, 

`⇒f(x) = {(cosx , 2npile x<(4n +1)pi/2),(0, x = (4n + 1)pi/2),(-cos x , (4n+1)pi/2 < x<(4n + 3)pi/2),(0, x = (4n +3)pi/2),(cos x , (4n + 3)pi/2 < xle (2n + 2)pi):}`\[\text{When, x is in first quadrant}, i . e . 2n\pi \leq x < \left( 4n + 1 \right)\frac{\pi}{2} , \text { we have }\]
\[ f\left( x \right) = \text{cos x which being a trigonometrical function is continuous and differentiable in} \left( 2n\pi, \left( 4n + 1 \right)\frac{\pi}{2} \right)\]
\[\text{When, x is in second quadrant or in third quadrant}, i . e . , \left( 4n + 1 \right)\frac{\pi}{2} < x < \left( 4n + 3 \right)\frac{\pi}{2} , \text { we have }\]
\[ f\left( x \right) = - \text{cos x which being a trigonometrical function is continuous and differentiable in} \left( \left( 4n + 1 \right)\frac{\pi}{2}, \left( 4n + 3 \right)\frac{\pi}{2} \right)\]
\[\text{When, x is in fourth quadrant}, i . e . , \left( 4n + 3 \right)\frac{\pi}{2} < x \leq \left( 2n + 2 \right)\pi , \text { we have }\]

\[ f\left( x \right) = \text { cos x which being a trigonometrical function is continuous and differentiable in } \left( \left( 4n + 3 \right)\frac{\pi}{2}, \left( 2n + 2 \right)\pi \right)\]
\[\text { Thus possible point of non - differentiability of } f\left( x \right)\text {  are x } = \left( 4n + 1 \right)\frac{\pi}{2}, \left( 4n + 3 \right)\frac{\pi}{2}\]
\[\text { Now, LHD } \left[ at x = \left( 4n + 1 \right)\frac{\pi}{2} \right] = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{f\left( x \right) - f\left( \left( 4n + 1 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{\cos x - 0}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{- \sin x}{1 - 0} \left[ \text { By L'Hospital rule } \right]\]
\[ = - 1\]
\[\text { And RHD } \left( at x = \left( 4n + 1 \right)\frac{\pi}{2} \right) = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} \frac{f\left( x \right) - f\left( \left( 4n + 1 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} \frac{- \cos x - 0}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} \frac{\sin x}{1 - 0} \left[ \text { By L'Hospital rule } \right]\]
\[ = 1\]
\[ \therefore \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} f\left( x \right) \neq \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} f\left( x \right)\]
\[\text { So } f\left( x \right)\text { is not differentiable at x }= \left( 4n + 1 \right)\frac{\pi}{2}\]
\[\text { Now, LHD }\left[\text {  at x } = \left( 4n + 3 \right)\frac{\pi}{2} \right] = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{f\left( x \right) - f\left( \left( 4n + 3 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^-} \frac{- \cos x - 0}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^-} \frac{\sin x}{1 - 0} \left[ \text { By L'Hospital rule } \right]\]
\[ = 1\]

\[ \text { And RHD } \left(\text {  at x }  = \left( 4n + 3 \right)\frac{\pi}{2} \right) = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} \frac{f\left( x \right) - f\left( \left( 4n + 3 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} \frac{\cos x - 0}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} \frac{- \sin x}{1 - 0} \left[ \text{By L'Hospital rule} \right]\]
\[ = - 1\]

\[ \therefore \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^-} f\left( x \right) \neq \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} f\left( x \right)\]
\[\text { So } f\left( x \right) \text{is not differentiable at x} = \left( 4n + 3 \right)\frac{\pi}{2}\]
\[\text{Therefore}, f\left( x \right)\text {  is neither differentiable at} \left( 4n + 1 \right)\frac{\pi}{2}\text {  nor at } \left( 4n + 3 \right)\frac{\pi}{2}\]
\[i . e . f\left( x \right) \text{is not differentiable at odd multiples of} \frac{\pi}{2}\]
\[i . e . f\left( x \right) \text{is not differentiable at x} = \left( 2n + 1 \right)\frac{\pi}{2}\]
\[\text{Therefore, f(x) is everywhere continuous but not differentiable at} \left( 2n + 1 \right)\frac{\pi}{2} .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.4 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.4 | Q 19 | पृष्ठ १९

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Examine the following function for continuity:

f(x) = | x – 5|


Discuss the continuity of the following functions at the indicated point(s): 

(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]


Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 


Discuss the continuity of the function f(x) at the point x = 0, where  \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]

 


For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


Determine the value of the constant k so that the function 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\] 


For what value of k is the function 

\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]


Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if }  x = 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}5 , & \text{ if }  & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if }  & x \geq 10\end{cases}\]


Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if }  \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

Find f (0), so that  \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\]  becomes continuous at x = 0.

 


Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


If  \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at  \[x = \frac{\pi}{2}\], if

 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


If f is defined by f (x) = x2, find f'(2).


Write the points of non-differentiability of 

\[f \left( x \right) = \left| \log \left| x \right| \right| .\]

Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


The function f (x) = sin−1 (cos x) is


If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


Discuss the continuity of the function f(x) = sin x . cos x.


If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


The function f(x) = |x| + |x – 1| is ______.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


If f is continuous on its domain D, then |f| is also continuous on D.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×