हिंदी

If F ( X ) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 1 − Sin 2 X 3 Cos 2 X , X < π 2 a , X = π 2 B ( 1 − Sin X ) ( π − 2 X ) 2 , X > π 2 . Then, F (X) is Continuous at X = π 2 (A) a = 1 3 , (B) a = 1 3 , B = 8 3 - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at  \[x = \frac{\pi}{2}\], if

 

विकल्प

  • \[a = \frac{1}{3},\] b = 2

  • \[a = \frac{1}{3}, b = \frac{8}{3}\]

  • \[a = \frac{2}{3}, b = \frac{8}{3}\]
  • none of these

MCQ

उत्तर

 \[a = \frac{1}{3} , b = \frac{8}{3}\]

Given:  

\[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x}, \text{ if }x < \frac{\pi}{2} \\ a, \text{ if }x = \frac{\pi}{2} \\ \frac{b\left( 1 - \ sinx \right)}{\left( \pi - 2x \right)^2}, \text{ if } x > \frac{\pi}{2}\end{cases}\]

We have
(LHL at x = \[\frac{\pi}{2}\] =  \[\lim_{x \to \frac{\pi}{2}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{2} - h \right)\]

\[= \lim_{h \to 0} \left( \frac{1 - \sin^2 \left( \frac{\pi}{2} - h \right)}{3 \cos^2 \left( \frac{\pi}{2} - h \right)} \right)\]
\[ = \lim_{h \to 0} \left( \frac{1 - \cos^2 h}{3 \sin^2 h} \right)\]
\[ = \frac{1}{3} \lim_{h \to 0} \left( \frac{\sin^2 h}{\sin^2 h} \right)\]
\[ = \frac{1}{3}\]

(RHL at x = \[\frac{\pi}{2}\] = \[\lim_{x \to \frac{\pi}{2}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{2} + h \right)\]

\[= \lim_{h \to 0} \left( \frac{b\left[ 1 - \sin \left( \frac{\pi}{2} + h \right) \right]}{\left[ \pi - 2\left( \frac{\pi}{2} + h \right) \right]^2} \right)\]
\[ = \lim_{h \to 0} \left( \frac{b\left( 1 - \cos h \right)}{\left[ - 2h \right]^2} \right)\]
\[ = \lim_{h \to 0} \left( \frac{2b \sin^2 \frac{h}{2}}{4 h^2} \right)\]
\[ = \lim_{h \to 0} \left( \frac{2b \sin^2 \frac{h}{2}}{16\frac{h^2}{4}} \right)\]
\[ = \frac{b}{8} \lim_{h \to 0} \left( \frac{\sin\frac{h}{2}}{\frac{h}{2}} \right)^2 \]
\[ = \frac{b}{8} \times 1\]
\[ = \frac{b}{8}\]

Also,

\[f\left( \frac{\pi}{2} \right) = a\]

If f(x) is continuous at x = \[\frac{\pi}{2}\], then 

\[\lim_{x \to \frac{\pi}{2}^-} f\left( x \right) = \lim_{x \to \frac{\pi}{2}^+} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]
\[\Rightarrow \frac{1}{3} = \frac{b}{8} = a\]
\[\Rightarrow a = \frac{1}{3} \text{ and } b = \frac{8}{3}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 39 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`

is continuous at x = 0, then find the values of a and b.


Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


Determine the value of the constant k so that the function 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\] 


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?

 


Given the function  
\[f\left( x \right) = \frac{1}{x + 2}\] . Find the points of discontinuity of the function f(f(x)).

If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


If  \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (ab) for which f (x) cannot be continuous at x = 1, is

 


The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 


The points of discontinuity of the function 

\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\] 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Show that the function 

\[f\left( x \right) = \begin{cases}x^m \sin\left( \frac{1}{x} \right) & , x \neq 0 \\ 0 & , x = 0\end{cases}\]

(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0


Discuss the continuity and differentiability of f (x) = |log |x||.


Let f (x) = |x| and g (x) = |x3|, then


The function f (x) = sin−1 (cos x) is


The function f (x) = e|x| is


Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4


Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3`   for x = 1


Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
                  = `1/12`,                      For x = 0


Examine the continuity of the followin function : 

  `{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`   


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


f(x) = `{{:(x^2/2",",  "if"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "if"  1 < x ≤ 2):}` at x = 1


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",",  "if"  0 ≤ x < 2),((x - 1)x",",  "if"  2 ≤ x < 3):}` at x = 2


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×