हिंदी

Examine the differentiability of f, where f is defined byf(x) = ,if,if{x[x], if 0≤x<2(x-1)x, if 2≤x<3 at x = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",",  "if"  0 ≤ x < 2),((x - 1)x",",  "if"  2 ≤ x < 3):}` at x = 2

योग

उत्तर

We know that a function f is differentiable at a point ‘a’ in its domain if

Lf'(x) = Rf'(c)

where Lf'(c) = `lim_("h" -> 0) ("f"("a" - "h") - "f"("a"))/(-"h")` and Rf'(c) = `lim_("h" -> 0)  ("f"("a" + "h") - "f"("a"))/"h"`

Here, f(x) = `{{:(x[x]",",  "if"  0 ≤ x < 2),((x - 1)x",",  "if"  2 ≤ x < 3):}` at x = 2

Lf'(c) = `lim_("h" -> 0) ("f"(2 - "h") - "f"(2))/(-"h")`

= `lim_("h" -> 0) ((2 - "h")[2 - "h"] - (2 - 1)2)/(-"h")`

= `lim_("h" -> 0) ((2 - "h") * 1 - 2)/(-"h")`  ....[∵ [2 – h] = 1]

= `lim_("h" -> 0) (2 - "h" - 2)/(-"h")`

= 1

Rf'(c) = `lim_("h" -> 0) ("f"(2 + "h") - "f"(2))/"h"`

= `lim_("h" -> 0) ((2 + "h" - 1)(2 + "h") - (2 - 1)*2)/"h"`

= `lim_("h" -> 0) ((1 + "h")(2 + "h") - 2)/"h"`

= `lim_("h" -> 0) (2 - "h" + 2"h" + "h"^2 - 2)/"h"`

= `lim_("h" -> 0) (3"h" + "h"^2)/"h"`

= `lim_("h" -> 0) ("h"(3 + "h"))/"h"`

= 3

Lf"(2) ≠ Rf'(2)

Hence, f(x) is not disserentiable at x = 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ १०९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 20 | पृष्ठ १०९

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


If  \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if }  x = 0\end{cases}\]


Define continuity of a function at a point.

 

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


If  \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Discuss the continuity and differentiability of f (x) = |log |x||.


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

The function f (x) =  |cos x| is


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


y = |x – 1| is a continuous function.


f(x) = |x| + |x − 1| at x = 1


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)`  is equal to ____________.


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×