English

Examine the differentiability of f, where f is defined byf(x) = ,if,if{x[x], if 0≤x<2(x-1)x, if 2≤x<3 at x = 2 - Mathematics

Advertisements
Advertisements

Question

Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",",  "if"  0 ≤ x < 2),((x - 1)x",",  "if"  2 ≤ x < 3):}` at x = 2

Sum

Solution

We know that a function f is differentiable at a point ‘a’ in its domain if

Lf'(x) = Rf'(c)

where Lf'(c) = `lim_("h" -> 0) ("f"("a" - "h") - "f"("a"))/(-"h")` and Rf'(c) = `lim_("h" -> 0)  ("f"("a" + "h") - "f"("a"))/"h"`

Here, f(x) = `{{:(x[x]",",  "if"  0 ≤ x < 2),((x - 1)x",",  "if"  2 ≤ x < 3):}` at x = 2

Lf'(c) = `lim_("h" -> 0) ("f"(2 - "h") - "f"(2))/(-"h")`

= `lim_("h" -> 0) ((2 - "h")[2 - "h"] - (2 - 1)2)/(-"h")`

= `lim_("h" -> 0) ((2 - "h") * 1 - 2)/(-"h")`  ....[∵ [2 – h] = 1]

= `lim_("h" -> 0) (2 - "h" - 2)/(-"h")`

= 1

Rf'(c) = `lim_("h" -> 0) ("f"(2 + "h") - "f"(2))/"h"`

= `lim_("h" -> 0) ((2 + "h" - 1)(2 + "h") - (2 - 1)*2)/"h"`

= `lim_("h" -> 0) ((1 + "h")(2 + "h") - 2)/"h"`

= `lim_("h" -> 0) (2 - "h" + 2"h" + "h"^2 - 2)/"h"`

= `lim_("h" -> 0) (3"h" + "h"^2)/"h"`

= `lim_("h" -> 0) ("h"(3 + "h"))/"h"`

= 3

Lf"(2) ≠ Rf'(2)

Hence, f(x) is not disserentiable at x = 2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 109]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 20 | Page 109

RELATED QUESTIONS

Examine the following function for continuity:

f(x) = | x – 5|


A function f(x) is defined as,

\[f\left( x \right) = \begin{cases}\frac{x^2 - x - 6}{x - 3}; if & x \neq 3 \\ 5 ; if & x = 3\end{cases}\]  Show that f(x) is continuous that x = 3.

If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}5 , & \text{ if }  & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if }  & x \geq 10\end{cases}\]


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


The function  \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]

 


Let f (x) = | x | + | x − 1|, then


The function  \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as

 


If  \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to


Show that the function 

\[f\left( x \right) = \begin{cases}x^m \sin\left( \frac{1}{x} \right) & , x \neq 0 \\ 0 & , x = 0\end{cases}\]

(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0


Give an example of a function which is continuos but not differentiable at at a point.


If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\] 

then at x = 0, f (x)


If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]


Let f (x) = |sin x|. Then,


If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = |x| + |x − 1| at x = 1


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


The composition of two continuous function is a continuous function.


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×