English

If F ( X ) = ⎧ ⎨ ⎩ Sin ( Cos X ) − Cos X ( π − 2 X ) 2 , X ≠ π 2 K , X = π 2 is Continuous at X = π/2, Then K is Equal to (A) 0 (B) 1 2 (C) 1 (D) −1 - Mathematics

Advertisements
Advertisements

Question

If  \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to

Options

  • 0

  • \[\frac{1}{2}\] 

  • 1

  • −1

MCQ

Solution

Given:  

\[f\left( x \right) = \binom{\frac{\sin\left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, x \neq \frac{\pi}{2}}{k, x = \frac{\pi}{2}}\]

If f(x) is continuous at  \[x = \frac{\pi}{2}\], then

\[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]
\[\Rightarrow \lim_{x \to \frac{\pi}{2}} \frac{\sin\left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2} = k\]

Now,

\[\frac{\pi}{2} - x = y\]
\[\Rightarrow \pi - 2x = 2y\]

Also,

\[x \to \frac{\pi}{2}, y \to 0\]
\[\Rightarrow \lim_{y \to 0} \frac{\sin\left( \cos\left( \frac{\pi}{2} - y \right) \right) - \cos\left( \frac{\pi}{2} - y \right)}{4 y^2} = k\]
\[\Rightarrow \lim_{y \to 0} \frac{\sin\left( \sin y \right) - \sin\left( y \right)}{4 y^2} = k\]

\[\Rightarrow \lim_{y \to 0} \frac{2 \sin\left( \frac{\sin y - y}{2} \right) \cos\left( \frac{\sin y + y}{2} \right)}{4 y^2} = k \left[ \because \sin C - \sin D = 2 sin\left( \frac{C - D}{2} \right) \cos\left( \frac{C + D}{2} \right) \right]\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \frac{\sin\left( \frac{\sin y - y}{2} \right)}{y}\frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \frac{\left( \frac{\sin y - y}{2} \right) \sin\left( \frac{\sin y - y}{2} \right)}{y\left( \frac{\sin y - y}{2} \right)}\frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \left( \frac{\left( \frac{\sin y - y}{2} \right)}{y} \right)\left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right)\left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \left( \frac{\left( \frac{\sin y - y}{2} \right)}{y} \right) \lim_{y \to 0} \left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right) \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{4} \lim_{y \to 0} \left( \frac{\sin y}{y} - 1 \right) \lim_{y \to 0} \left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right) \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{4} \times 0 \times 1 \times \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow 0 = k\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 42 | Page 47

RELATED QUESTIONS

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


For what value of k is the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  continuous at x = 0?

 


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\] 

 


Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\frac{e^x - 1}{\log_e (1 + 2x)}, & \text{ if }x \neq 0 \\ 7 , & \text{ if } x = 0\end{cases}\]

Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

Define continuity of a function at a point.

 

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


If  \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (ab) for which f (x) cannot be continuous at x = 1, is

 


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

Discuss the continuity and differentiability of f (x) = e|x| .


Is every differentiable function continuous?


Is every continuous function differentiable?


Give an example of a function which is continuos but not differentiable at at a point.


Find the value of k for which the function f (x ) =  \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .

 
 

Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Examine the continuity of the following function :
f(x) = x2 - x + 9,          for x ≤ 3
      = 4x + 3,               for x > 3 
at x = 3.


Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
                  = `1/12`,                      For x = 0


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


The value of k which makes the function defined by f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}`, continuous at x = 0 is ______.


The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×