Advertisements
Advertisements
Question
If \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to
Options
0
\[\frac{1}{2}\]
1
−1
Solution
Given:
If f(x) is continuous at \[x = \frac{\pi}{2}\], then
Now,
Also,
\[\Rightarrow \lim_{y \to 0} \frac{2 \sin\left( \frac{\sin y - y}{2} \right) \cos\left( \frac{\sin y + y}{2} \right)}{4 y^2} = k \left[ \because \sin C - \sin D = 2 sin\left( \frac{C - D}{2} \right) \cos\left( \frac{C + D}{2} \right) \right]\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \frac{\sin\left( \frac{\sin y - y}{2} \right)}{y}\frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \frac{\left( \frac{\sin y - y}{2} \right) \sin\left( \frac{\sin y - y}{2} \right)}{y\left( \frac{\sin y - y}{2} \right)}\frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \left( \frac{\left( \frac{\sin y - y}{2} \right)}{y} \right)\left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right)\left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \left( \frac{\left( \frac{\sin y - y}{2} \right)}{y} \right) \lim_{y \to 0} \left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right) \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{4} \lim_{y \to 0} \left( \frac{\sin y}{y} - 1 \right) \lim_{y \to 0} \left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right) \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{4} \times 0 \times 1 \times \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow 0 = k\]
APPEARS IN
RELATED QUESTIONS
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Show that
\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]
For what value of k is the function
If \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if } & x = 2\end{cases}\] is continuous at x = 2, find k.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\]
Prove that \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0
If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions:
Find all point of discontinuity of the function
Define continuity of a function at a point.
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if } x \neq 4 \\ k , & \text{ if } x = 4\end{cases}\] is continuous at x = 4, find k.
The value of f (0), so that the function
If \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (a, b) for which f (x) cannot be continuous at x = 1, is
The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] continuous at x = 0, is
Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat:
Discuss the continuity and differentiability of f (x) = e|x| .
Is every differentiable function continuous?
Is every continuous function differentiable?
Give an example of a function which is continuos but not differentiable at at a point.
Find the value of k for which the function f (x ) = \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .
Find the value of 'k' if the function
f(x) = `(tan 7x)/(2x)`, for x ≠ 0.
= k for x = 0.
is continuous at x = 0.
Examine the continuity of the following function :
f(x) = x2 - x + 9, for x ≤ 3
= 4x + 3, for x > 3
at x = 3.
Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
= `1/12`, For x = 0
If the function f is continuous at x = 0 then find f(0),
where f(x) = `[ cos 3x - cos x ]/x^2`, `x!=0`
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
The value of k which makes the function defined by f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}`, continuous at x = 0 is ______.
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
Prove that the function f defined by
f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.
Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`