हिंदी

If F ( X ) = ⎧ ⎨ ⎩ Sin ( Cos X ) − Cos X ( π − 2 X ) 2 , X ≠ π 2 K , X = π 2 is Continuous at X = π/2, Then K is Equal to (A) 0 (B) 1 2 (C) 1 (D) −1 - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to

विकल्प

  • 0

  • \[\frac{1}{2}\] 

  • 1

  • −1

MCQ

उत्तर

Given:  

\[f\left( x \right) = \binom{\frac{\sin\left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, x \neq \frac{\pi}{2}}{k, x = \frac{\pi}{2}}\]

If f(x) is continuous at  \[x = \frac{\pi}{2}\], then

\[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]
\[\Rightarrow \lim_{x \to \frac{\pi}{2}} \frac{\sin\left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2} = k\]

Now,

\[\frac{\pi}{2} - x = y\]
\[\Rightarrow \pi - 2x = 2y\]

Also,

\[x \to \frac{\pi}{2}, y \to 0\]
\[\Rightarrow \lim_{y \to 0} \frac{\sin\left( \cos\left( \frac{\pi}{2} - y \right) \right) - \cos\left( \frac{\pi}{2} - y \right)}{4 y^2} = k\]
\[\Rightarrow \lim_{y \to 0} \frac{\sin\left( \sin y \right) - \sin\left( y \right)}{4 y^2} = k\]

\[\Rightarrow \lim_{y \to 0} \frac{2 \sin\left( \frac{\sin y - y}{2} \right) \cos\left( \frac{\sin y + y}{2} \right)}{4 y^2} = k \left[ \because \sin C - \sin D = 2 sin\left( \frac{C - D}{2} \right) \cos\left( \frac{C + D}{2} \right) \right]\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \frac{\sin\left( \frac{\sin y - y}{2} \right)}{y}\frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \frac{\left( \frac{\sin y - y}{2} \right) \sin\left( \frac{\sin y - y}{2} \right)}{y\left( \frac{\sin y - y}{2} \right)}\frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \left( \frac{\left( \frac{\sin y - y}{2} \right)}{y} \right)\left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right)\left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{2} \lim_{y \to 0} \left( \frac{\left( \frac{\sin y - y}{2} \right)}{y} \right) \lim_{y \to 0} \left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right) \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{4} \lim_{y \to 0} \left( \frac{\sin y}{y} - 1 \right) \lim_{y \to 0} \left( \frac{\sin\left( \frac{\sin y - y}{2} \right)}{\left( \frac{\sin y - y}{2} \right)} \right) \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow \frac{1}{4} \times 0 \times 1 \times \lim_{y \to 0} \left( \frac{\cos\left( \frac{\sin y + y}{2} \right)}{y} \right) = k\]
\[ \Rightarrow 0 = k\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 42 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


A function f(x) is defined as,

\[f\left( x \right) = \begin{cases}\frac{x^2 - x - 6}{x - 3}; if & x \neq 3 \\ 5 ; if & x = 3\end{cases}\]  Show that f(x) is continuous that x = 3.

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


Determine the value of the constant k so that the function 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\] 


For what value of k is the function 

\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]


Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


For what value of k is the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  continuous at x = 0?

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if }  x = 0\end{cases}\]


Define continuity of a function at a point.

 

If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

If  \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at  \[x = \frac{\pi}{2}\], if

 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Discuss the continuity and differentiability of f (x) = e|x| .


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

Write the points where f (x) = |loge x| is not differentiable.


Let f (x) = |x| and g (x) = |x3|, then


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


Examine the continuity of the followin function : 

  `{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`   


Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}`


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


The function given by f (x) = tanx is discontinuous on the set ______.


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


If f is continuous on its domain D, then |f| is also continuous on D.


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×