हिंदी

The value of f (0), so that the function f ( x ) = √ a 2 − a x + x 2 − √ a 2 + a x + x 2 √ a + x − √ a − x becomes continuous for all x, given by - Mathematics

Advertisements
Advertisements

प्रश्न

The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

विकल्प

  • a3/2

  • a1/2 

  • a1/2 

  • a3/2

MCQ

उत्तर

\[- a^\frac{1}{2}\]

Given: 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]

\[\Rightarrow f\left( x \right) = \frac{\left( \sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2} \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}{\left( \sqrt{a + x} - \sqrt{a - x} \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{\left( a^2 - ax + x^2 - \left( a^2 + ax + x^2 \right) \right)}{\left( \sqrt{a + x} - \sqrt{a - x} \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{\left( - 2ax \right)\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( \sqrt{a + x} - \sqrt{a - x} \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)\left( \sqrt{a + x} + \sqrt{a - x} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{\left( - 2ax \right)\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( a + x - a + x \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{\left( - 2ax \right)\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( 2x \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{- a\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]

If  \[f\left( x \right)\]  is continuous for all x, then it will be continuous at x = 0 as well. 

So, if  \[f\left( x \right)\]  is continuous at x = 0, then

 is continuous at x = 0, then
\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]
\[\Rightarrow \lim_{x \to 0} \left[ \frac{- a\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)} \right] = f\left( 0 \right)\]
\[ \Rightarrow \left[ \frac{- 2a\left( \sqrt{a} \right)}{\left( \sqrt{a^2} + \sqrt{a^2} \right)} \right] = f\left( 0 \right)\]
\[ \Rightarrow \left[ \frac{- 2a\left( \sqrt{a} \right)}{\left( a + a \right)} \right] = f\left( 0 \right)\]
\[ \Rightarrow f\left( 0 \right) = - \sqrt{a}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 16 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Determine the value of 'k' for which the following function is continuous at x = 3

`f(x) = {(((x + 3)^2 - 36)/(x - 3),  x != 3), (k,  x = 3):}`


Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`


Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

Discuss the continuity of the function f(x) at the point x = 0, where  \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]

 


Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


If  \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


Discuss the continuity of the f(x) at the indicated points: 

(i) f(x) = | x | + | x − 1 | at x = 0, 1.


Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if }  x < \frac{\pi}{2} \\ a , & \text{ if }  x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if }  x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.

 

Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if }  \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].


Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

Write the points where f (x) = |loge x| is not differentiable.


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


Find the value of k for which the function f (x ) =  \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .

 
 

Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


Find the values of a and b such that the function f defined by
f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "if"  x < 4),("a" + "b"",",  "if"  x = 4),((x - 4)/(|x - 4|) + "b"",", "if"  x > 4):}`
is a continuous function at x = 4.


If f is continuous on its domain D, then |f| is also continuous on D.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×