Advertisements
Advertisements
प्रश्न
Write the points where f (x) = |loge x| is not differentiable.
उत्तर
Given:
Clearly
(LHD at x = 1)
\[ = - \lim_{x \to 1^-} \frac{\log x}{x - 1}\]
\[ = - \lim_{h \to 0} \frac{\log (1 - h)}{1 - h - 1}\]
\[ = - \lim_{h \to 0} \frac{\log (1 - h)}{- h} \]
\[ = - 1\]
(RHD at x=1)
\[= \lim_{x \to 1^+} \frac{\log x - \log 1}{x - 1}\]
\[ = \lim_{x \to 1^+} \frac{\log x}{x - 1}\]
\[ {= \lim_{h \to 0}}_{} \frac{\log (1 + h)}{1 + h - 1}\]
\[ = \lim_{h \to 0} \frac{\log (1 + h)}{h}\]
\[ = 1\]
Thus, (LHD at x =1) ≠ (RHD at x =1)
So,
APPEARS IN
संबंधित प्रश्न
A function f(x) is defined as,
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Find the value of 'a' for which the function f defined by
For what value of k is the function
\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]
Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when} & x \neq 0 \\ k ,\text{ when } & x = 0\end{cases}\] is continuous at x = 0;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]
If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
The function
If \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals
If \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
Show that f(x) = x1/3 is not differentiable at x = 0.
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat:
Show that the function
(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
The function f (x) = |cos x| is
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4
= 10 for x = 4 at x = 4
`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?
If f is continuous at x = 0, then find f (0).
Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`
If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)` so that f (x) becomes continuous at x = `pi/4`
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
f(x) = `{{:(|x - 4|/(2(x - 4))",", "if" x ≠ 4),(0",", "if" x = 4):}` at x = 4
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",", "if" 0 ≤ x < 2),((x - 1)x",", "if" 2 ≤ x < 3):}` at x = 2
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.