Advertisements
Advertisements
प्रश्न
Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4
= 10 for x = 4 at x = 4
उत्तर
`f(4) = 10`
`lim_(x→4)f(x)=lim_(x→4)(x^3-64)/(sqrt(x^2+9)-5)`
`=lim_(x→4)(x^3-64)/(sqrt(x^2+9)-5)`
`lim_(x→4)(x^3-4^3)/(sqrt(x^2+9)-5)xx(sqrt(x^2+9)+5)/(sqrt(x^2+9)+5)`
`Lim_(x→4)((x^3-4^3)(sqrtx^2+9+5))/((sqrtx^2+9)^2-(-5)^2)`
`Lim_(x→4) ((x-4)(x^2+4x+16)(sqrt(x^2+9)+5))/(x^2+9-25)` .......`[a^3 – b^3 = (a – b) (a^2 + ab + b^2))`
`Lim_(x→4) ((x-4)(x^2+4x+16)(sqrt(x^2+9)+5))/(x^2-16)`
`Lim_(x→4) ((x-4)(x^2+4x+16)(sqrt(x^2+9)+5))/((x-4)(x+4)`)
`Lim_(x→4) ((x^2+4x+16)(sqrt(x^2+9)+5))/(x+4)`
`(((4)^2+4(4)+16)(sqrt(4^2+9)+5))/(4+4)`
`((16+16+16)(sqrt(16+9)+5))/8`
`((16+16+16)(sqrt(25)+5))/8`
`((16+16+16)(5+5))/8`
`(48x10)/8`
`f(x)lim_(x→4)=60`
`lim_(x→4) f(x)≠f(4)`
∴ f (x) is not continuous at x = 4.
APPEARS IN
संबंधित प्रश्न
Discuss the continuity of the following functions at the indicated point(s):
For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if } \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].
If \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals
If \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is
The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] continuous at x = 0, is
The points of discontinuity of the function
\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\]
The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]
Define differentiability of a function at a point.
Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .
If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.
The function given by f (x) = tanx is discontinuous on the set ______.
Find the values of a and b such that the function f defined by
f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "if" x < 4),("a" + "b"",", "if" x = 4),((x - 4)/(|x - 4|) + "b"",", "if" x > 4):}`
is a continuous function at x = 4.
A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.