हिंदी

If F ( X ) = { 36 X − 9 X − 4 X + 1 √ 2 − √ 1 + Cos X , X ≠ 0 K , X = 0 is Continuous at X = 0, Then K Equals (A) 16 √ 2 Log 2 Log 3 (B) 16 √ 2 (C) 16 √ 2 Ln 2 Ln 3 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals

 

विकल्प

  • \[16\sqrt{2}\] log 2 log 3

  • \[16\sqrt{2}\]

  • \[16\sqrt{2}\]  ln 2 ln 3

  • none of these

MCQ

उत्तर

\[16\sqrt{2} \ln2 \ln3\]

Given: 

\[f\left( x \right) = \binom{\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \ cosx}}, x \neq 0}{k, x = 0}\]

If  \[f\left( x \right)\]  is continuous at  \[x = 0\] , then 

\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]

\[\Rightarrow \lim_{x \to 0} \left( \frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{9^x 4^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{9^x \left( 4^x - 1 \right) - 1\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{2}\cos \left( \frac{x}{2} \right)} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2}\left[ 1 - \cos \left( \frac{x}{2} \right) \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2}\left[ 2 \sin^2 \left( \frac{x}{4} \right) \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{8\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{16\sqrt{2} x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{x^2} \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{8\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{\left( \frac{x^2}{16} \right)} \right]} \right) = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{\left( \frac{x}{4} \right)^2} \right]} \right) = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}}\frac{\lim_{x \to 0} \left( \frac{9^x - 1}{x} \right) \lim_{x \to 0} \left( \frac{4^x - 1}{x} \right)}{\lim_{x \to 0} \left[ \frac{\sin \left( \frac{x}{4} \right)}{\left( \frac{x}{4} \right)} \right]^2} = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \times \frac{\ln 9 \times \ln 4}{1} = k \left[ \because \lim_{x \to 0} \left( \frac{a^x - 1}{x} \right) = a \right]\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \times \frac{2 \ln 3 \times \left( 2 \ln 2 \right)}{1} = k \]
\[ \]
\[ \Rightarrow \frac{32}{\sqrt{2}} \times \frac{\ln 3 \ln 2}{1} = k\]
\[ \Rightarrow \frac{32\sqrt{2}}{2} \times \frac{\ln 3 \ln 2}{1} = k\]
\[ \Rightarrow k = 16\sqrt{2} \ln 2 \ln 3\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 4 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if }  & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\]  is continuous at x = 4, find ab.

 


Discuss the continuity of the f(x) at the indicated points: 

(i) f(x) = | x | + | x − 1 | at x = 0, 1.


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that f(x) = x1/3 is not differentiable at x = 0.


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


Is every differentiable function continuous?


Is every continuous function differentiable?


Give an example of a function which is continuos but not differentiable at at a point.


Write the points of non-differentiability of 

\[f \left( x \right) = \left| \log \left| x \right| \right| .\]

The function f (x) = e|x| is


If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?


Examine the continuity of the following function :

`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`


Examine the continuity of the following function :
f(x) = x2 - x + 9,          for x ≤ 3
      = 4x + 3,               for x > 3 
at x = 3.


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


A continuous function can have some points where limit does not exist.


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:(|x - 4|/(2(x - 4))",", "if"  x ≠ 4),(0",", "if"  x = 4):}` at x = 4


f(x) = `{{:(x^2/2",",  "if"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "if"  1 < x ≤ 2):}` at x = 1


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


If f(x) = `x^2 sin  1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)`  is equal to ____________.


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×