हिंदी

Show that the Function F ( X ) = { | 2 X − 3 | [ X ] , X ≥ 1 Sin ( π X 2 ) , X < 1 is Continuous but Not Differentiable at X = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.

संक्षेप में उत्तर

उत्तर

Given: 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\]
Continuity at = 1:
(LHL at x = 1) = 
\[\lim_{x \to 1^-} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} \sin\left( \frac{\pi (1 - h)}{2} \right) = \sin\frac{\pi}{2} = 1\]
(RHL at = 1) = 
\[\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1 + h) = \lim_{h \to 0} \left| 2(1 + h) - 3 \right|\left[ 1 + h \right] = \lim_{h \to 0} \left| 2(1 + h) - 3 \right| = 1\]

Hence, (LHL at x = 1) = (RHL at x = 1)

Differentiability at = 1:

\[\left(\text {  LHD at x } = 1 \right) = \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[\left( \text { LHD at x } = 1 \right) = \lim_{h \to 0} \frac{f\left( 1 - h \right) - f\left( 1 \right)}{1 - h - 1}\]
\[\left( \text { LHD at x = 1 } \right) = \lim_{h \to 0} \frac{f\left( 1 - h \right) - f\left( 1 \right)}{- h}\]
\[\left( \text { LHD at x } = 1 \right) = \lim_{h \to 0} \frac{\sin\left( \frac{\pi\left( 1 - h \right)}{2} \right) - 1}{- h}\]
\[\left( \text { LHD at x = 1 } \right) = \lim_{h \to 0} \frac{\cos\frac{\ pih}{2} - 1}{- h}\]
\[\left( \text { LHD at x = 1 } \right) = - \frac{\pi}{2} \lim_{h \to 0} \frac{\cos\frac{\ pih}{2} - 1}{\frac{\pi}{2}h} = 0\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{f\left( 1 + h \right) - f\left( 1 \right)}{1 + h - 1}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{f\left( 1 + h \right) - f\left( 1 \right)}{h}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{- \left( 2\left( 1 + h \right) - 3 \right) - 1}{h}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{- 2h}{h} = - 2\]

LHD ≠ RHD
Hence, the function is continuous but not differentiable at x = 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.1 | Q 9 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Determine the value of 'k' for which the following function is continuous at x = 3

`f(x) = {(((x + 3)^2 - 36)/(x - 3),  x != 3), (k,  x = 3):}`


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): 

(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}(x - a)\sin\left( \frac{1}{x - a} \right), & x \neq a \\ 0 , & x = a\end{array}at x = a \right.\]

 


Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 


Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


Determine the value of the constant k so that the function 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\] 


Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


If  \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


Prove that
\[f\left( x \right) = \begin{cases}\frac{\sin x}{x} , & x < 0 \\ x + 1 , & x \geq 0\end{cases}\] is everywhere continuous.

 


Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?

 


If  \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals

 


The function  \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]

 


Let f (x) = | x | + | x − 1|, then


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


The value of b for which the function 

\[f\left( x \right) = \begin{cases}5x - 4 , & 0 < x \leq 1 \\ 4 x^2 + 3bx , & 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 

If  \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Write the points where f (x) = |loge x| is not differentiable.


The function f (x) = sin−1 (cos x) is


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`


The function f(x) = |x| + |x – 1| is ______.


The value of k which makes the function defined by f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}`, continuous at x = 0 is ______.


y = |x – 1| is a continuous function.


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


Find the values of a and b such that the function f defined by
f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "if"  x < 4),("a" + "b"",",  "if"  x = 4),((x - 4)/(|x - 4|) + "b"",", "if"  x > 4):}`
is a continuous function at x = 4.


`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)`  is equal to ____________.


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×