हिंदी

Find the Value of 'A' for Which the Function F Defined by F ( X ) = { a Sin π 2 ( X + 1 ) , X ≤ 0 Tan X − Sin X X 3 , X > 0 is Continuous at X = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 

योग

उत्तर

\[f\left( x \right) = \binom{a \sin \frac{\pi}{2}\left( x + 1 \right), x \leq 0}{\frac{\tan x - \sin x}{x^3}, x > 0}\]

We have

(LHL at x = 0) = 

\[\lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( 0 - h \right) = \lim_{h \to 0} f\left( - h \right) = \lim_{h \to 0} a \sin \frac{\pi}{2}\left( - h + 1 \right) = a \sin\frac{\pi}{2} = a\]

(RHL at x = 0) = 

\[\lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( 0 + h \right) = \lim_{h \to 0} f\left( h \right) = \lim_{h \to 0} \frac{\tan h - \sin h}{h^3}\]

\[\Rightarrow \lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} \frac{\frac{\sin h}{\cos h} - \sin h}{h^3}\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} \frac{\frac{\sin h}{\cos h}\left( 1 - \cos h \right)}{h^3}\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} \frac{\left( 1 - \cos h \right)\tan h}{h^3}\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}\tan h}{4\frac{h^2}{4} \times h}\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \frac{2}{4} \lim_{h \to 0} \frac{\sin^2 \frac{h}{2}\tan h}{\frac{h^2}{4} \times h}\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \frac{1}{2} \lim_{h \to 0} \left( \frac{\sin\frac{h}{2}}{\frac{h}{2}} \right)^2 \lim_{h \to 0} \frac{\tan h}{h}\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \frac{1}{2} \times 1 \times 1\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \frac{1}{2}\]

\[If f\left( x \right) \text{is continuous at} x = 0, then\]

\[ \lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right)\]

\[ \Rightarrow a = \frac{1}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.1 | Q 13 | पृष्ठ १८

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

\[f\left( x \right) = \begin{cases}k( x^2 - 2x), \text{ if }  & x < 0 \\ \cos x, \text{ if }  & x \geq 0\end{cases}\] at x = 0

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if }  \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].


Define continuity of a function at a point.

 

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


Show that f(x) = x1/3 is not differentiable at x = 0.


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


Discuss the continuity and differentiability of f (x) = |log |x||.


Discuss the continuity and differentiability of f (x) = e|x| .


Define differentiability of a function at a point.

 

If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

The set of points where the function f (x) = x |x| is differentiable is 

 


The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4


Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3`   for x = 1


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


 If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1


If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b


Discuss the continuity of the function f(x) = sin x . cos x.


The value of k which makes the function defined by f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}`, continuous at x = 0 is ______.


f(x) = `{{:(|x - 4|/(2(x - 4))",", "if"  x ≠ 4),(0",", "if"  x = 4):}` at x = 4


f(x) = |x| + |x − 1| at x = 1


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


The composition of two continuous function is a continuous function.


`lim_("x" -> 0) (2  "sin x - sin"  2 "x")/"x"^3` is equal to ____________.


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×