हिंदी

If the Functions F(X), Defined Below is Continuous at X = 0, Find the Value of K. F ( X ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 1 − Cos 2 X 2 X 2 , X < 0 K , X = 0 X | X | , X > 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 

योग

उत्तर

Given: 

\[f\left( x \right) = \begin{cases}\frac{1 - \cos2x}{2 x^2}, x < 0 \\ k, x = 0 \\ \frac{x}{\left| x \right|}, x > 0\end{cases}\] 

\[\Rightarrow f\left( x \right) = \begin{cases}\frac{1 - \cos2x}{2 x^2}, x < 0 \\ k, x = 0 \\ 1, x > 0\end{cases}\]

We have
(LHL at x = 0) = 

\[\lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( 0 - h \right)\]

\[= \lim_{h \to 0} \left( \frac{1 - \cos2\left( - h \right)}{2 \left( - h \right)^2} \right)\]
\[ = \lim_{h \to 0} \left( \frac{1 - \cos2h}{2 h^2} \right)\]
\[ = \frac{1}{2} \lim_{h \to 0} \left( \frac{2 \sin^2 h}{h^2} \right)\]
\[ = \frac{2}{2} \lim_{h \to 0} \left( \frac{\sin^2 h}{h^2} \right)\]
\[ = \frac{2}{2} \lim_{h \to 0} \left( \frac{\text{ sin } h}{h} \right)^2 \]
\[ = 1 \times 1\]

(RHL at x = 0) = 

\[\lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( 0 + h \right) = \lim_{h \to 0} f\left( h \right)\]
\[= \lim_{h \to 0} \left( 1 \right) = 1\]

Also,

\[f\left( 0 \right) = k\]

If f(x) is continuous at x = 0, then

\[\lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\]
\[\Rightarrow 1 = 1 = k\]

Hence, the required value of is 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.1 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.1 | Q 45 | पृष्ठ २१

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Determine the value of 'k' for which the following function is continuous at x = 3

`f(x) = {(((x + 3)^2 - 36)/(x - 3),  x != 3), (k,  x = 3):}`


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}(x - a)\sin\left( \frac{1}{x - a} \right), & x \neq a \\ 0 , & x = a\end{array}at x = a \right.\]

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{2\left| x \right| + x^2}{x}, & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]

Discuss the continuity of the function f(x) at the point x = 0, where  \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\] 

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if }  x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if }  x < 1\end{cases}\]


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


Is every differentiable function continuous?


Write the points where f (x) = |loge x| is not differentiable.


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Examine the continuity of the following function :

`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`


If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


The function given by f (x) = tanx is discontinuous on the set ______.


The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


f(x) = `{{:(x^2/2",",  "if"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "if"  1 < x ≤ 2):}` at x = 1


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


If f is continuous on its domain D, then |f| is also continuous on D.


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×