हिंदी

If the following function is continuous at x = 2 then the value of k will be ______. f(x) = ,,,{2x+1,ifx<2 k,ifx=23x-1,ifx>2 - Mathematics

Advertisements
Advertisements

प्रश्न

If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`

विकल्प

  • 2

  • 3

  • 5

  • – 1

MCQ
रिक्त स्थान भरें

उत्तर

If the following function is continuous at x = 2 then the value of k will be 5.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`

Explanation:

k = 5

∵ f(x) is continuous at x = 2

∴ LHL = RHL = f(2)   ...(i)

Now LHL = `lim_(h -> 0) f(2 - h)`

= `lim_(h -> 0) 2(2 - h) + 1`

= `lim_(h -> 0) 5 - 2h`

= 5 – 0

= 5

RHL = `lim_(h -> 0) f(2 + h)`

= `lim_(h -> 0) 3(2 + h) - 1`

= `lim_(h -> 0) 5 + 3h`

= 5 + 0

= 5

And f(2) = k

Then by (i),

LHL = RHL = f(2)

`\implies` k = 5

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Official

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Examine the following function for continuity:

f(x) = | x – 5|


Discuss the continuity of the function f, where f is defined by `f(x) = {(2x , ","if x < 0),(0, "," if 0 <= x <= 1),(4x, "," if x > 1):}`


Determine the value of the constant k so that the function 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\] 


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


Define continuity of a function at a point.

 

If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

If  \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is


Show that f(x) = x1/3 is not differentiable at x = 0.


Is every differentiable function continuous?


Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is 


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


 If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",",  "if"  0 ≤ x < 2),((x - 1)x",",  "if"  2 ≤ x < 3):}` at x = 2


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


If f is continuous on its domain D, then |f| is also continuous on D.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×